基于RDN-YOLO的自然环境下水稻病害识别模型研究

文献类型: 中文期刊

第一作者: 廖娟

作者: 廖娟;刘凯旋;杨玉青;严从宽;张爱芳;朱德泉

作者机构:

关键词: 水稻病害识别;YOLO v5;跨阶段部分网络融合模块;空间深度转换卷积;轻量化

期刊名称: 农业机械学报

ISSN: 1000-1298

年卷期: 2024 年 008 期

页码: 233-242

收录情况: EI ; 北大核心 ; CSCD

摘要: 针对自然环境下水稻病害识别准确度易受复杂背景干扰、病害类间差异小难以准确识别等问题,以提高水稻病害识别精度并进行模型的有效轻量化为前提,提出了一种水稻病害识别网络模型(RiceDiseaseNet, RDN-YOLO)。以YOLO v5为基本框架,在主干网络的特征提取阶段嵌入跨阶段部分网络融合模块(C2f),增强模型对病害特征的感知能力,并引入空间深度转换卷积(SPDConv),扩展模型的感受野,进一步提升模型对小病斑特征提取能力;在颈部网络嵌入SPDConv结构,并利用轻量级卷积GsConv替换部分标准卷积,提高颈部网络对病害部位的定位和类别信息预测的准确性及推理速度;以穗瘟病、叶瘟病、胡麻斑病、稻曲病和白枯病5种常见水稻病害为研究对象,在自然环境下采集水稻病害图像,制作水稻病害数据集,进行模型训练与测试。实验结果表明,本文模型病害检测精确率高达94.2%,平均精度均值达93.5%,模型参数量为8.1 MB;与YOLO v5、Faster R-CNN、YOLO v7、YOLO v8模型相比,模型参数量略大于YOLO v5,但平均精度均值最高约高12.2个百分点,在一定程度上减轻模型复杂度的同时获得良好的水稻病害识别效果。

分类号: TP391.41%S435.111

  • 相关文献

[1]基于改进YOLO v5的复杂环境下桑树枝干识别定位方法. 李丽,卢世博,任浩,徐刚,周永忠. 2024

[2]基于改进YOLO v5复杂场景下肉鹅姿态的检测算法研究. 刘璎瑛,曹晅,郭彬彬,陈慧杰,戴子淳,龚长万. 2023

[3]基于YOLO v5和多源数据集的水稻主要害虫识别方法. 梁勇,邱荣洲,李志鹏,陈世雄,张钟,赵健. 2022

[4]基于改进YOLO v5的复杂环境下柑橘目标精准检测与定位方法. 李丽,梁继元,张云峰,张官明,淳长品. 2024

[5]遮挡条件下多视角甜椒果实点云三维重构方法. 王昱,易振峰,谭文超,郭金菊,周星星,赵俊宏. 2024

[6]基于改进YOLO v5的宁夏草原蝗虫识别模型研究. 马宏兴,张淼,董凯兵,魏淑花,张蓉,王顺霞. 2022

[7]一种剑麻装载机的轻量化设计与应用. 陈涛,金刚,覃旭,黄显雅,彭欣怡,刘明,吴密,周肇峰. 2021

[8]基于轻量化卷积神经网络的改进模型与验证. 李润龙,王运圣,徐识溥,刘勇. 2020

[9]改进Multi-scale ResNet的蔬菜叶部病害识别. 王春山,周冀,吴华瑞,滕桂法,赵春江,李久熙. 2020

[10]喷雾机喷杆结构的研究现状及展望. 乔白羽,丁素明,薛新宇,崔龙飞,周晴晴,张亚萍. 2017

[11]基于LW-YOLOv3模型的棉花主茎生长点检测与定位研究. 孙想,吴华瑞,朱华吉,杨雨森,陈诚,何思琪,王春山. 2021

[12]电驱自走式农机测试平台的设计. 余涛,刘俊杰,杨存志,叶岩,孙先明,李国林. 2021

[13]轻型拖车车架设计和静动力学仿真研究. 石凯飞. 2022

[14]基于改进YOLOv4算法的番茄叶部病害识别方法. 储鑫,李祥,罗斌,王晓冬,黄硕. 2023

[15]基于改进YOLO v5s的轻量化植物识别模型研究. 马宏兴,董凯兵,王英菲,魏淑花,黄文广,苟建平. 2023

[16]基于 YOLOV5-MobilenetV3和声呐图像的鱼类识别轻量化模型. 罗毅智,陆华忠,周星星,袁余,齐海军,李斌,刘志昌. 2023

[17]基于边缘设备的轻量化小目标果实检测模型. 张文利,陈开臻,刘鈺昕,段玉林,郭威,史云. 2021

[18]果园凿型铲式深松机优化设计与试验. 李亚丽,曹中华,湛小梅,杨清慧,崔晋波,李英. 2021

作者其他论文 更多>>