基于图像特征的植物形态相似度算法

文献类型: 中文期刊

第一作者: 丁维龙

作者: 丁维龙;辛卫涛;徐志福;吴福理;高楠

作者机构:

关键词: 植物形态;图像相似度;视觉特征;权重设置;信息熵

期刊名称: 中国图象图形学报

ISSN: 1006-8961

年卷期: 2019 年 12 期

页码: 2255-2266

收录情况: 北大核心 ; CSCD

摘要: 目的研究不同植物形态之间的相似度是有效区分植物种类或科属的一个重要依据。目前的植物形态相似度计算方法,大多只考虑了植物拓扑结构或者外围轮廓等几何形状方面的相似性,而未涉及叶片颜色、冠层叶片的稠密状态及株型的松散状态等因素。因此,基于植物图像的形状特征和颜色特征,本文提出一种基于图像特征的植物形态相似度计算方法。方法首先,获取图像的轮廓特征和区域特征。轮廓特征用植物枝条的松散程度表示,具体包括植物的高宽比、轮廓四边形和第1个1级侧枝的高度;区域特征用叶片稠密度表示,计算叶片所占整个包围矩形面积的比例。其次,获取图像的颜色特征,使用基于HSV和YUV颜色空间的颜色直方图,统计图像的颜色分布。最后,利用信息熵分析数据的离散程度,据此确定各部分对应的权重大小,加权得到总体的相似度值。结果实验在人工采集的数据集上进行,得出松散度、稠密度和颜色对应的权重分别为0.62、0.17和0.21。在此基础上得到的相似度计算结果符合实际,可以有效度量植物之间的相似程度。同时,将提出的算法应用于图像检索,并与常见的5种方法进行比较。实验得出该算法查准率都在0.747 7以上。在同一查准率水平下,相比于其他方法,查全率也都处于较高水平。尤其在相似度阈值大于0.8时,查准率可以达到0.910 8以上。另外,该方法对植物图像缩放不敏感,同类植物的相似度依然接近于1。结论本文提出的植物形态相似度算法,结合了形状特征和颜色特征,计算结果符合人的视觉感受。与其他方法相比,可以更有效区分植物种类或科属。算法主要适用于背景单一的单株植物图像,可为研究植物形态的相似性提供技术参考。

分类号: Q94`TP391.41

  • 相关文献

[1]基于深度学习与特征可视化方法的草地贪夜蛾及其近缘种成虫识别. 魏靖,王玉亭,袁会珠,张梦蕾,王振营. 2020

[2]计算机视觉技术在茶叶领域中的应用现状及展望. 刘飞,王云,罗凡. 2019

[3]低磷胁迫对不同品种高粱苗期形态及生理指标的影响. 马建华,王玉国,孙毅,尹美强,牛常青,杨艳君. 2013

[4]植物逆境相关长链非编码RNA的研究进展. 郑佳秋,吴永成,王薇薇,梅燚,祖艳侠,郭军,刘云芬. 2020

[5]藏药陇蜀杜鹃研究进展. 杨鹏,尚小飞,王瑜,王鹏锋. 2017

[6]三维点云孔洞修补算法及在植物形态重建中的应用. 岳杰,陆声链,孙智慧,郭新宇,魏学礼. 2013

[7]围栏与放牧对高山嵩草草甸植物个体形态特征的影响. 范月君,侯向阳. 2016

[8]新疆野生油菜的考察和研究. 王兆木,焦清亮,李艺. 1990

[9]不同供硼水平对绿豆植株形态及其叶片生长特征的影响(英文). 焦晓燕,王岗,程滨,王宏庭,Quick W. P. ,Jarvis B. C.. 2003

[10]围栏与放牧对高山嵩草草甸植物个体形态特征的影响. 范月君,侯向阳. 2016

[11]蕉芋. 张德纯. 2015

[12]甘西鼠尾草的生药学研究. 史彦斌,薛明,崔颖,罗永江. 2002

[13]基于Voronoi和信息熵的空间离群样点检测. 王妍,潘瑜春,王慧. 2010

[14]云瑞14系列甘蔗新品系的信息熵理论综合评价. 俞华先,经艳芬,安汝东,郎荣斌,边芯,周清明,田春艳. 2018

[15]基于信息熵分层抽样的冬小麦区域种植面积估算. 王铮,李文君,张锦水. 2018

[16]基于遥感和信息熵的城乡结合部范围界定——以荆州市为例. 钱建平,周勇,杨信廷. 2007

[17]基于信息熵和模糊物元模型的城乡结合部农地质量评价——以湖北省荆州市为例. 聂艳,周勇,钱建平,黄建武. 2008

[18]基于信息熵的海南省可持续发展能力评价. 胡盛红,刘海清. 2009

[19]基于信息熵理论的模糊综合评价方法及其在棉花区试中的应用. 路凤银,刘松涛,赵威,郑贝贝,李付广. 2013

[20]信息熵综合评价方法在小麦品种区域试验中的应用. 郭瑞林,赵虹,王西成,曹廷杰,纪利坤. 2007

作者其他论文 更多>>