基于改进YOLO v3-tiny的全景图像农田障碍物检测
文献类型: 中文期刊
第一作者: 陈斌
作者: 陈斌;张漫;徐弘祯;李寒;尹彦鑫
作者机构:
关键词: 农田障碍物检测;全景相机;YOLO v3-tiny;残差网络
期刊名称: 农业机械学报
ISSN: 1000-1298
年卷期: 2021 年 0S1 期
页码: 58-65
收录情况: EI ; 北大核心 ; CSCD
摘要: 为实现自动导航农机的避障,解决搭载在农机顶部的全景相机获取其周围360°的图像信息并精确实时快速检测出障碍物的问题,提出了一种改进YOLO v3-tiny目标检测模型,实现了田间行人和其他农机的检测与识别。为了提高全景图像中小目标的检测效果,以检测速度快、轻量级的网络模型YOLO v3-tiny为基础框架,通过融合浅层特征与第二YOLO预测层之前的拼接层作为第三预测层,增加小目标的检测效果;为了进一步增加网络模型对目标特征的提取能力,借鉴残差网络的思想,在YOLO v3-tiny主干网络上引入残差模块,增加网络深度和学习能力,从而能够较好地提高网络的检测能力。为了验证模型的性能,建立了农田环境下1 100幅行人与农机两类障碍物图像原始数据集,经数据扩增后得到2 200幅图像数据集,按8∶1∶1将数据集划分为训练集、验证集和测试集,在Pytorch 1.8深度学习框架下进行模型训练,模型训练完后用220幅测试集图像对不同模型进行测试。试验结果表明,基于改进YOLO v3-tiny的农田障碍物检测模型,平均准确率和召回率分别为95.5%和93.7%,相比于原网络模型,分别提高了5.6、5.2个百分点;单幅全景图像检测耗时为6.3 ms,视频流检测平均帧率为84.2 f/s,模型内存为64 MB。改进后的模型,在保证检测精度较高的同时,能够满足农机在运动状态下实时障碍物检测需求。
分类号: S220.39%TP391.41
- 相关文献
[1]基于欧氏聚类的三维激光点云田间障碍物检测方法. 尚业华,张光强,孟志军,王昊,苏春华,宋正河. 2022
[2]高噪声环境下基于参考影像的车载序列影像定位方法. 季顺平,史云. 2014
[3]基于深度残差网络的番茄叶片病害识别方法. 吴华瑞. 2019
[4]改进Mask R-CNN的温室环境下不同成熟度番茄果实分割方法. 龙洁花,赵春江,林森,郭文忠,文朝武,张宇. 2021
[5]基于注意力机制和多尺度残差网络的农作物病害识别. 黄林生,罗耀武,杨小冬,杨贵军,王道勇. 2021
[6]基于深度残差网络的麦穗回归计数方法. 刘航,刘涛,李世娟,李路华,吕纯阳,刘升平. 2021
[7]融合ResNet与支持向量机的葡萄园冠层图像叶片覆盖度分类. 代国威,陈稼瑜,樊景超. 2023
[8]基于可见光谱和改进注意力的农作物病害识别. 孙文斌,王荣,高荣华,李奇峰,吴华瑞,冯璐. 2022
作者其他论文 更多>>
-
盐碱土壤水溶性Cl-、NO3-、SO42-离子提取与离子色谱仪同时测定技术研究
作者:孔令娥;晋琪;李寒;孙子怡;张宇航;郑磊;马常宝;汪洪
关键词:离子色谱仪;盐碱土;水溶性Cl-;水溶性NO-3;水溶性SO42-
-
辣椒种质资源农艺性状综合评价
作者:洪成;赵建荣;程春园;郑婉婉;耿三省;陈斌;杜和山;张晓芬
关键词:辣椒;种质资源;相关性分析;主成分分析;聚类分析;综合评价
-
联合收获机轻量级数字孪生系统构建方法研究
作者:马博文;刘孟楠;尹彦鑫;孟志军;张宾;张亚伟;温昌凯;张安琪
关键词:联合收获机;数字孪生;轻量级;运动逻辑建模;齐次矩阵
-
基于插值法分析施肥量和留叶数对烤烟的影响
作者:朱经伟;张恒;刘青丽;彭友;刘艳霞;李寒;王新修;马亚欢;张燕;王红星;方正华;杨磊
关键词:施肥量;留叶数;烤烟;株形;品质
-
我国华东与华南地区养殖鱼类迟缓爱德华氏菌分离株的多样性分析
作者:李素一;池洪树;陈斌;张晓佩;许斌福
关键词:迟缓爱德华氏菌;血清型;16S rRNA;hsp60;系统进化树
-
簇生朝天椒新品种国塔612的选育
作者:陈斌;张晓芬;杜和山;贾志杨;耿三省
关键词:辣椒;国塔612;一代杂种
-
两种测报灯对浙中地区玉米田害虫的种群监测与动态分析
作者:韩海亮;章金明;董航顺;陈斌;王桂跃;徐红星;吕仲贤;赵福成
关键词:高空测报灯;自动虫情测报灯;玉米害虫;种群监测;动态分析