卷积神经网络在农业病虫害识别中的应用

文献类型: 中文期刊

第一作者: 张耀丽

作者: 张耀丽;许宁;宋裕民;孟庆山;侯旭;李虎

作者机构:

关键词: 卷积神经网络;病虫害识别;深度学习;图像识别

期刊名称: 农业装备与车辆工程

ISSN: 1673-3142

年卷期: 2023 年 002 期

页码: 58-62

摘要: 利用卷积神经网络等图像处理技术研究识别作物病虫害是农业智能化未来发展的必然趋势,具有识别速度快、精度高等优点。综述了卷积神经网络的几种经典模型及其分别在农作物病虫害识别领域的应用成果;讨论了卷积神经网络在农业病虫害识别领域的局限性和发展趋势,以期更有利于卷积神经网络技术更好地帮助农业进步和经济发展。

分类号: TP183%TP391.41%S43

  • 相关文献

[1]深度学习方法在农业领域的研究及应用. 马聪,张建华,陈学东,朱丹. 2020

[2]基于卷积神经网络的农机图像自动识别研究. 雷雪梅,张光强,姚旗,刘伟渭,邱帅. 2022

[3]基于分层卷积神经网络的牧草种子识别模型. 王欣宇,马玉宝,潘新,闫伟红. 2021

[4]基于深度学习的水稻病虫害诊断方法研究. 姜敏,沈一鸣,张敬尧,饶元,董伟. 2019

[5]基于深度学习网络实现番茄病虫害检测与识别. 王铭慧,张怀清,樊江川,陈帮乾,云挺. 2023

[6]基于多列空洞卷积神经网络的麦穗计数方法研究. 刘云玲,张品戈,王千航,周睿琪,赵佳,肖永贵,马韫韬. 2021

[7]基于注意力机制及多尺度特征融合的番茄叶片缺素图像分类方法. 韩旭,赵春江,吴华瑞,朱华吉,张燕. 2021

[8]基于卷积神经网络的入侵昆虫识别研究. 黄亦其,鹿林飞,沈豪,王福宽,乔曦. 2024

[9]基于改进VGG卷积神经网络的棉花病害识别模型. 张建华,孔繁涛,吴建寨,翟治芬,韩书庆,曹姗姗. 2018

[10]基于卷积神经网络和小样本的茶树病害图像识别. 孙云云,江朝晖,董伟,张立平,饶元,李绍稳. 2019

[11]基于迁移学习和金字塔卷积网络的河蟹个体图像识别方法研究. 冯裕清,杨信廷,徐大明,罗娜,陈枫,孙传恒. 2022

[12]基于YOLOv3深度卷积神经网络的田间百香果定位. 林营志,卢依琳,刘现. 2019

[13]基于性诱和深度学习的草地贪夜蛾成虫自动识别计数方法. 邱荣洲,赵健,何玉仙,陈韶萍,黄美玲,池美香,梁勇,翁启勇. 2021

[14]基于Faster R-CNN的美国白蛾图像识别模型研究. 薛大暄,张瑞瑞,陈立平,陈梅香,徐刚. 2020

[15]采用组合增强的YOLOX-ViT协同识别温室内番茄花果. 吕志远,张付杰,魏晓明,黄媛,李晶晶,张钟莉莉. 2023

[16]基于图像处理和Deeplabv3+模型的小麦赤霉病识别. 戴雨舒,仲晓春,孙成明,杨俊,刘涛,刘升平. 2021

[17]农业害虫自动识别与监测技术. 封洪强,姚青. 2018

[18]基于RGB图像和CNN模型的水稻氮素诊断系统. 吕斌,姚强,粟超,李波,查茜,黄祥,詹火木. 2024

[19]基于AI的桃树病害智能识别方法研究与应用. 吴建伟,黄杰,熊晓菲,高晗,秦向阳. 2022

[20]基于改进Res Net50模型的大宗淡水鱼种类识别方法. 万鹏,赵竣威,朱明,谭鹤群,邓志勇,黄毓毅,吴文锦,丁安子. 2021

作者其他论文 更多>>