采用组合增强的YOLOX-ViT协同识别温室内番茄花果

文献类型: 中文期刊

第一作者: 吕志远

作者: 吕志远;张付杰;魏晓明;黄媛;李晶晶;张钟莉莉

作者机构:

关键词: 图像识别;深度学习;番茄;级联网络;YOLOX;Transformer;协同检测;图像增强

期刊名称: 农业工程学报

ISSN: 1002-6819

年卷期: 2023 年 004 期

页码: 124-134

收录情况: EI ; 北大核心 ; CSCD

摘要: 番茄花果的协同识别是温室生产管理调控的重要决策依据,针对温室番茄栽培密度大,植株遮挡、重叠等因素导致的现有识别算法精度不足问题,该研究提出一种基于级联深度学习的番茄花果协同识别方法,引入图像组合增强与前端ViT分类网络,以提高模型对于小目标与密集图像检测性能。同时,通过先分类识别、再进行目标检测的级联网络,解决了传统检测模型因为图像压缩而导致的小目标模糊、有效信息丢失问题。最后,引入了包括大果和串果在内的不同类型番茄品种数据集,验证了该方法的可行性与有效性。经测试,研究提出的目标检测模型的平均识别率均值(mean average precision,m AP)为92.30%,检测速度为28.46帧/s,其中对小花、成熟番茄和未成熟番茄识别平均准确率分别为87.92%、92.35%和96.62%。通过消融试验表明,与YOLOX、组合增强YOLOX相比,改进后的模型m AP提高了2.38~6.11个百分点,相比于现有YOLOV3、YOLOV4、YOLOV5主流检测模型,m AP提高了16.56~23.30个百分点。可视化结果表明,改进模型实现了对小目标的零漏检和对密集对象的无误检,从而达到了高精度的协同检测目标。研究成果为温室种植环境下的番茄生长识别提供参考。

分类号: S641.2%TP391.41

  • 相关文献

[1]基于改进YOLOV5s网络的奶牛多尺度行为识别方法. 白强,高荣华,赵春江,李奇峰,王荣,李书琴. 2022

[2]基于卷积神经网络的农机图像自动识别研究. 雷雪梅,张光强,姚旗,刘伟渭,邱帅. 2022

[3]基于迁移学习和金字塔卷积网络的河蟹个体图像识别方法研究. 冯裕清,杨信廷,徐大明,罗娜,陈枫,孙传恒. 2022

[4]基于YOLOv3深度卷积神经网络的田间百香果定位. 林营志,卢依琳,刘现. 2019

[5]基于性诱和深度学习的草地贪夜蛾成虫自动识别计数方法. 邱荣洲,赵健,何玉仙,陈韶萍,黄美玲,池美香,梁勇,翁启勇. 2021

[6]基于Faster R-CNN的美国白蛾图像识别模型研究. 薛大暄,张瑞瑞,陈立平,陈梅香,徐刚. 2020

[7]卷积神经网络在农业病虫害识别中的应用. 张耀丽,许宁,宋裕民,孟庆山,侯旭,李虎. 2023

[8]基于图像处理和Deeplabv3+模型的小麦赤霉病识别. 戴雨舒,仲晓春,孙成明,杨俊,刘涛,刘升平. 2021

[9]农业害虫自动识别与监测技术. 封洪强,姚青. 2018

[10]基于分层卷积神经网络的牧草种子识别模型. 王欣宇,马玉宝,潘新,闫伟红. 2021

[11]基于RGB图像和CNN模型的水稻氮素诊断系统. 吕斌,姚强,粟超,李波,查茜,黄祥,詹火木. 2024

[12]基于AI的桃树病害智能识别方法研究与应用. 吴建伟,黄杰,熊晓菲,高晗,秦向阳. 2022

[13]基于改进Res Net50模型的大宗淡水鱼种类识别方法. 万鹏,赵竣威,朱明,谭鹤群,邓志勇,黄毓毅,吴文锦,丁安子. 2021

[14]农作物害虫图像识别研究进展与展望. 张萌,钱蓉,朱静波,张立平,李闰枚,董伟. 2018

[15]基于群体图像识别的生菜鲜重估算方法研究. 徐丹,李硕果,陈晶晶,崔庭源,张义,马浚诚. 2024

[16]基于改进SSD轻量化神经网络的番茄疏花疏果农事识别方法. 陈新,伍萍辉,祖绍颖,徐丹,张云鹤,董静. 2021

[17]番茄非接触式单果质量估测方法. 许伟浩,李斌,林森,郑书河,郎冲冲,李涛,董创,郭文忠. 2021

[18]基于深度学习网络实现番茄病虫害检测与识别. 王铭慧,张怀清,樊江川,陈帮乾,云挺. 2023

[19]基于改进YOLOv5l的设施番茄3D信息检测方法. 林森,许童羽,葛禹豪,马璟,孙添龙,赵春江. 2024

[20]基于GC-Cascade R-CNN的梨叶病斑计数方法. 薛卫,程润华,康亚龙,黄新忠,徐阳春,董彩霞. 2022

作者其他论文 更多>>