基于状态向量增强ByteTrack的新生羔羊活动量自动计算方法

文献类型: 中文期刊

第一作者: 林庆霞

作者: 林庆霞;顾兴健;陈新文;熊迎军;张国敏;王锋;张生福;陆明洲

作者机构:

关键词: 动物;目标检测;多目标跟踪;数据关联;遮挡;羔羊活动量

期刊名称: 农业工程学报

ISSN: 1002-6819

年卷期: 2024 年 013 期

页码: 146-155

收录情况: EI ; 北大核心 ; CSCD

摘要: 为评价母羊繁殖性能并及时发现分娩栏中的弱活力羔羊,该研究提出一种基于状态向量增强ByteTrack的新生羔羊活动量自动计算方法。针对传统ByteTrack算法在跟踪目标被遮挡时易发生身份切换的问题,引入置信度信息增强的状态向量,提高跟踪算法区分遮挡与被遮挡羔羊的能力。针对跟踪目标丢失导致轨迹预测不准确的问题,构建目标丢失期间的虚拟轨迹并重更新轨迹状态向量,以纠正轨迹误差。在获取各羔羊活动轨迹后,计算各羔羊帧间移动距离统计羔羊活动量。在江苏海门山羊研发中心采集的新生羔羊活动视频数据集上,测试状态向量增强的ByteTrack多目标跟踪算法性能。测试结果表明,研究提出的多目标跟踪方法在高阶跟踪精度、多目标跟踪精度、多目标跟踪准确度、IDF1得分上分别达到80.8%、86.1%、84.5%和92.2%,相较于现有算法的最高精度,分别提高2.7、0.2、2.3和3.9个百分点。该研究所提方法能够实现同窝多只新生羔羊的稳定跟踪,为新生羔羊活动量的自动计算、母羊繁殖性能的自动评估提供技术支撑。

分类号: S826%TP391.41

  • 相关文献

[1]基于Bytetrack的多目标跟踪算法在斑马鱼毒性行为识别中的应用. 赵海翔,崔鸿武,黄桢铭,王磊,李皓,崔正国,曲克明. 2024

[2]超级稻产量的分子设计育种. 郭龙彪,曾大力,董国军,葫时开,钱前. 2009

[3]基于实例分割的柑橘花朵识别及花量统计. 邓颖,吴华瑞,朱华吉. 2020

[4]基于区域亮度自适应校正的茶叶嫩芽检测模型. 吕军,方梦瑞,姚青,武传宇,贺盈磊,边磊,钟小玉. 2021

[5]改进YOLOv4的温室环境下草莓生育期识别方法. 龙洁花,郭文忠,林森,文朝武,张宇,赵春江. 2021

[6]基于改进YOLO v5的复杂环境下桑树枝干识别定位方法. 李丽,卢世博,任浩,徐刚,周永忠. 2024

[7]基于机器视觉和深度学习的稻纵卷叶螟性诱智能监测系统. 张哲宇,孙果镓,杨保军,刘淑华,吕军,姚青,唐健. 2022

[8]基于改进YOLOv5s的硬核期葡萄簇检测. 冯晓,张辉,刘运超,张微,李小红,马中杰. 2024

[9]农业害虫检测的深度学习算法综述. 蒋心璐,陈天恩,王聪,李书琴,张宏鸣,赵春江. 2023

[10]基于TensorFlow的水族馆鱼类目标检测APP开发. 张胜茂,刘洋,樊伟,邹国华,张衡,杨胜龙. 2020

[11]基于改进YOLOv3的温室番茄果实识别估产方法. 成伟,张文爱,冯青春,张万豪. 2021

[12]基于MS-YOLO v7的多尺度稻飞虱识别分类方法. 刘双喜,刘思涛,屈慧星,王刘西航,胡宪亮,许增海. 2023

[13]基于深度学习的蚕茧种类识别研究. 石洪康,李林波,祝明辉,陈义安,马勇,张剑飞. 2023

[14]基于AlexNet的栽培苜蓿病害识别. 李云昊,李仲贤,伏帅,张忠雪,茆士琴,冯琦胜,梁天刚,李彦忠. 2023

[15]基于DeepSORT算法的循环水养殖鱼池漂浮死鱼智能捞除技术研究. 李金刚,张宇雷,倪琦,黄达. 2023

[16]基于改进YOLOX模型的柑橘木虱检测方法. 王海漫,俞婷,肖明明,杨嘉诚,陈富荣,易干军,林德球,罗敏. 2022

[17]基于YOLOv4的稻田杂草目标检测算法. 袁涛,胡冬,马超,李琳一,郑秀国,钱戴玲. 2023

[18]基于改进YOLOv7的设施番茄苗期株高检测方法研究. 程雅雯,康睿,任妮,周玲莉,卢鑫羽,吴茜. 2024

[19]基于改进YOLOv8s的大田甘蓝移栽状态检测算法. 吴小燕,郭威,朱轶萍,朱华吉,吴华瑞. 2024

[20]基于机器视觉的鲐鱼鱼体定向排列输送装置设计与试验. 万鹏,黄毓毅,汪荣,李梦珂,肖畅宇,吴文锦. 2023

作者其他论文 更多>>