基于深度学习的半监督图像标注系统设计与实现

文献类型: 中文期刊

第一作者: 胡明玉

作者: 胡明玉;夏雪;杨晨雪;曹景军;柴秀娟

作者机构:

关键词: 图像标注;深度学习;目标检测;食用菌;半监督

期刊名称: 中国农业大学学报

ISSN: 1007-4333

年卷期: 2021 年 005 期

页码: 153-162

收录情况: 北大核心 ; CSCD

摘要: 针对深度学习研究中标注训练样本费时费力的问题,以食用菌为研究对象,设计一种基于深度学习的半监督图像标注方法。该方法将深度学习目标检测模型与迭代图像标注工作有效结合,采用“检测模型训练—目标自动检测—人工标注修正—检测模型更新”的迭代操作,实现半监督方式的图像标注。基于所设计的方法构建了半监督图像标注系统,在试验中对系统进行性能评测和分析。结果表明:迭代更新后的检测模型在测试集上的检测准确率为98.1%,召回率为88.5%,平均准确率为88.3%;利用所构建的半监督图像标注系统可以实现15s/幅的标注速度,单幅图像的标注耗时仅为纯手工标注耗时的2.5%,图像标注时间代价大幅降低。研究结果为深度学习研究中的训练样本标注提供了高效的标注方法和工具,有助于提高图像标注效率,减少人力成本投入。

分类号: TP391.41`TP18

  • 相关文献

[1]基于机器视觉和深度学习的稻纵卷叶螟性诱智能监测系统. 张哲宇,孙果镓,杨保军,刘淑华,吕军,姚青,唐健. 2022

[2]农业害虫检测的深度学习算法综述. 蒋心璐,陈天恩,王聪,李书琴,张宏鸣,赵春江. 2023

[3]基于深度学习的蚕茧种类识别研究. 石洪康,李林波,祝明辉,陈义安,马勇,张剑飞. 2023

[4]基于AlexNet的栽培苜蓿病害识别. 李云昊,李仲贤,伏帅,张忠雪,茆士琴,冯琦胜,梁天刚,李彦忠. 2023

[5]基于YOLOv4的稻田杂草目标检测算法. 袁涛,胡冬,马超,李琳一,郑秀国,钱戴玲. 2023

[6]基于深度学习的杂草识别方法研究进展. 付豪,赵学观,翟长远,郑康,郑申玉,王秀. 2023

[7]基于改进YOLOv5s的日光温室黄瓜霜霉病孢子囊检测计数方法. 李明,丁智欢,赵靖暄,陈思铭,李文勇,杨信廷. 2023

[8]基于YOLOv5s-SE和通道剪枝的虫咬紫金蝉茶检测方法研究. 戴佳兵,宋春芳,凌彩金,李臻锋,孙崇高. 2024

[9]基于YOLOv3模型的金枪鱼鱼群特征识别初步研究. 马硕,张禹,王鲁民,张勋,金卫国,王国来,常卫东. 2021

[10]大田环境下的农业害虫图像小目标检测算法. 蒋心璐,陈天恩,王聪,赵春江. 2024

[11]深度学习在蜜蜂研究中的应用. 孙逸飞,丁桂玲,路运才,刘振虎,黄家兴. 2023

[12]面向海洋渔业捕捞生产的深度学习方法应用研究进展. 张胜茂,孙永文,樊伟,唐峰华,崔雪森,伍玉梅. 2022

[13]水族馆鱼类目标检测网络优化研究. 刘洋,张胜茂,王书献,王斐,樊伟,邹国华,伯静. 2022

[14]基于坐标注意力机制与高效边界框回归损失的线虫快速识别. 陆健强,梁效,余超然,兰玉彬,邱洪斌,黄捷伟,尹梓濠,陈慧洁,郑胜杰. 2022

[15]基于改进YOLO-V4网络的浅海生物检测模型. 毛国君,翁伟栋,朱晋德,张媛,吴富村,毛玉泽. 2021

[16]基于实例分割的柑橘花朵识别及花量统计. 邓颖,吴华瑞,朱华吉. 2020

[17]基于区域亮度自适应校正的茶叶嫩芽检测模型. 吕军,方梦瑞,姚青,武传宇,贺盈磊,边磊,钟小玉. 2021

[18]改进YOLOv4的温室环境下草莓生育期识别方法. 龙洁花,郭文忠,林森,文朝武,张宇,赵春江. 2021

[19]基于改进YOLO v5的复杂环境下桑树枝干识别定位方法. 李丽,卢世博,任浩,徐刚,周永忠. 2024

[20]基于改进YOLOv5s的硬核期葡萄簇检测. 冯晓,张辉,刘运超,张微,李小红,马中杰. 2024

作者其他论文 更多>>