基于CASI高光谱数据的作物叶面积指数估算

文献类型: 中文期刊

第一作者: 唐建民

作者: 唐建民;廖钦洪;刘奕清;杨贵军;冯海宽;王纪华

作者机构:

关键词: CASI高光谱数据;叶面积指数;植被指数;波段组合;空间分布

期刊名称: 光谱学与光谱分析

ISSN: 1000-0593

年卷期: 2015 年 35 卷 05 期

页码: 1351-1356

收录情况: EI ; SCI ; 北大核心 ; CSCD

摘要: 叶面积指数(LAI)的快速估算对于及时了解作物长势、病虫害监测以及产量评估具有重要意义。利用2012年7月7日在黑河流域张掖市获取的CASI高光谱数据,精确提取出了不同作物的光谱反射率,同时结合地面实测数据,对比分析了宽波段和"红边"植被指数在估算作物LAI方面的潜力,在此基础上,基于波段组合算法,筛选出作物LAI估算的敏感波段,并构建了两个新型光谱指数NDSI和RSI,最后对研究区域作物LAI的空间分布进行了分析。结果表明,在植被覆盖度较低的情况下,宽波段植被指数NDVI对LAI具有较好的估算效果,模型的精度R2与RMSE分别为0.52,0.45(p<0.01);对于"红边"植被指数,由于CIred edge充分考虑了不同的作物类型,其对LAI的估算精度与NDVI一致;利用波段组合算法构建的光谱指数NDSI(569.00,654.80)和RSI(597.6,654.80)对LAI估算的效果要优于NDVI与CIred edge,其中,NDSI(569.00,654.80)主要利用了植被光谱"绿峰"和"红谷"附近的波段,模型估算的精度R2可达0.77(p<0.000 1);根据LAI与NDSI(569.00,654.80)之间的函数关系,绘制作物LAI的空间分布图,经分析,研究区域的西北部LAI值偏低,需增施肥料。研究结果,可为农业管理部门及时掌握作物长势信息、制定施肥策略提供技术支持。

分类号: S311`S12

  • 相关文献

[1]基于光谱特征与PLSR结合的叶面积指数拟合方法的无人机画幅高光谱遥感应用. 高林,杨贵军,李长春,冯海宽,徐波,王磊,董锦绘,付奎. 2017

[2]基于植被指数与叶面积指数的水稻生长状况监测. 田翠玲,李秉柏,郑有飞. 2005

[3]基于成像高光谱仪的大豆叶面积指数反演研究. 陆国政,李长春,杨贵军,于海洋,赵晓庆,张晓燕. 2016

[4]基于无人机遥感影像的大豆叶面积指数反演研究. 高林,杨贵军,王宝山,于海洋,徐波,冯海宽. 2015

[5]基于多源遥感数据的大豆叶面积指数估测精度对比. 高林,李长春,王宝山,杨贵军,王磊,付奎. 2016

[6]基于分段方式选择敏感植被指数的冬小麦叶面积指数遥感反演. 李鑫川,徐新刚,鲍艳松,黄文江,罗菊花,董莹莹,宋晓宇,王纪华. 2012

[7]基于支持向量机回归的冬小麦叶面积指数遥感反演. 梁栋,管青松,黄文江,黄林生,杨贵军. 2013

[8]基于无人机高光谱遥感的冬小麦株高和叶面积指数估算. 陶惠林,徐良骥,冯海宽,杨贵军,代阳,牛亚超. 2020

[9]基于热点植被指数的冬小麦叶面积指数估算. 陈瀚阅,牛铮,黄文江,黄妮,张瀛. 2012

[10]基于冠层反射光谱的玉米LAI和地上干物重估测研究. 赵巧丽,郑国清,段韶芬,戴廷波. 2008

[11]基于无人机多光谱遥感的春玉米叶面积指数和地上部生物量估算模型比较研究. 樊鸿叶,李姚姚,卢宪菊,顾生浩,郭新宇,刘玉华. 2021

[12]基于SPOT5影像分析植被指数与水稻叶面积指数和产量的相关性. 李源洪,魏来,姚兴柱,周华茂. 2014

[13]基于作物模型与叶面积指数遥感影像同化的区域单产估测研究. 杨鹏,吴文斌,周清波,陈仲新,查燕,唐华俊,柴崎亮介. 2007

[14]基于高光谱植被指数的水稻LAI遥感估算. 张敏,郭涛,刘轲,黄平,喻君,刘仕川,刘泳伶,李源洪. 2022

[15]波段宽度对利用植被指数估算小麦LAI的影响. 黄婷,梁亮,耿笛,李丽,王李娟,王树果,罗翔,杨敏华. 2020

[16]冬小麦不同株型品种光谱响应及株型识别方法研究. 卢艳丽,李少昆,王纪华,谢瑞芝,黄文江,高世菊,刘良云,王之杰. 2005

[17]基于无人机多光谱信息与纹理特征融合的小麦叶面积指数估测. 齐浩,孙海芳,吕亮杰,李偲,闵家楠,侯亮. 2025

[18]施氮水平对苇状羊茅反射光谱的影响. 张文,王普昶,罗天琼,陈功,杨春燕. 2015

[19]高光谱遥感在植被理化信息提取中的应用动态. 谭昌伟,王纪华,黄文江,刘良云,黄义德,严伟才. 2005

[20]施氮水平对苇状羊茅反射光谱特征的影响. 张文,王普昶,罗天琼,陈功,杨春燕. 2015

作者其他论文 更多>>