利用无人机高光谱影像的冬小麦氮含量监测
文献类型: 中文期刊
第一作者: 冯海宽
作者: 冯海宽;樊意广;陶惠林;杨福芹;杨贵军;赵春江
作者机构:
关键词: 无人机;冬小麦;高光谱;氮含量;逐步回归;光谱特征参数
期刊名称: 光谱学与光谱分析
ISSN: 1000-0593
年卷期: 2023 年 43 卷 010 期
页码: 3239-3246
收录情况: EI ; SCI ; 北大核心 ; CSCD
摘要: 作物氮含量影响作物的生长状况,合适的施氮量可以促进作物生长和提高作物产量,因此准确、快速地监测作物的氮含量十分必要.旨在探索将无人机成像高光谱获取的植被指数和光谱特征参数相结合以提高冬小麦关键生育期氮含量估算精度的潜力.首先,以无人机为遥感平台,搭载高光谱传感器获取了冬小麦拔节期、挑旗期、开花期和灌浆期 4 个主要生育期的高光谱遥感影像,并实测了各生育期的氮含量数据.其次,基于预处理后的高光谱影像,提取冬小麦各生育期的冠层反射率数据,并构造能较好反映作物氮素营养状况的 12 种植被指数和 12 种光谱特征参数.然后,计算了各光谱参数与冬小麦氮含量的相关性,并筛选出各生育期与氮含量相关性较强的植被指数和光谱特征参数;最后,利用逐步回归分析(SWR)构建基于植被指数、植被指数结合光谱特征参数的氮含量估算模型.结果显示:(1)选取的大部分植被指数和光谱特征参数与冬小麦氮含量都有较高的相关性.其中,植被指数的相关性高于光谱特征参数;(2)基于单个植被指数或光谱特征参数估算冬小麦虽然可行,但精度还有待进一步提高;(3)与单一植被指数或光谱特征参数相比,植被指数结合光谱特征变量利用 SWR方法构建的氮含量估算模型的精度和稳定性更高(拔节期:建模R2=0.64,RMSE=24.68%,NRMSE=7.96%,验证R2 =0.77,RMSE=23.13%,NRMSE=7.81%;挑旗期:建模R2=0.81,RMSE=15.79%,NRMSE=7.41%,验证R2 =0.84,RMSE=15.10%,NRMSE= 7.08%;开花期:建模R2 =0.78,RMSE=9.88%,NRMSE=5.66%,验证R2 =0.85,RMSE=9.12%,NRMSE=4.76%;灌浆期:建模R2=0.49,RMSE=13.68%,NRMSE=9.85%,验证R2=0.40,RMSE= 18.29%,NRMSE=14.73%).研究结果表明,结合无人机成像高光谱获取的植被指数和光谱特征参数构建的冬小麦氮含量估算模型精度和稳定性较高,研究结果可为冬小麦氮含量的空间分布和精准管理提供参考.
分类号: S25
- 相关文献
[1]基于无人机数码影像的冬小麦株高和生物量估算. 陶惠林,徐良骥,冯海宽,杨贵军,杨小冬,苗梦珂,代阳. 2019
[2]基于无人机数码影像和高光谱数据的冬小麦产量估算对比. 陶惠林,冯海宽,杨贵军,杨小冬,苗梦珂,吴智超,翟丽婷. 2019
[3]基于无人机高光谱遥感数据的冬小麦生物量估算. 陶惠林,冯海宽,徐良骥,杨贵军,杨小冬,苗梦珂,刘明星. 2020
[4]基于随机森林算法的冬小麦叶面积指数遥感反演研究. 张春兰,杨贵军,李贺丽,汤伏全,刘畅,张丽妍. 2018
[5]融合多因子的无人机高光谱遥感冬小麦产量估算. 谢瑞,杨福芹,冯海宽,李天驰. 2023
[6]基于无人机高光谱影像的冬小麦叶片氮浓度遥感估测. 孙法福,赖宁,耿庆龙,李永福,吕彩霞,信会男,李娜,陈署晃. 2024
[7]苹果叶片磷含量高光谱估测模型研究. 杨福芹,冯海宽,蒋瑞波,孙冰可,张周,姚真真,李天驰. 2021
[8]基于无人机多光谱影像的夏玉米叶片氮含量遥感估测. 魏鹏飞,徐新刚,李中元,杨贵军,李振海,冯海宽,陈帼,范玲玲,王玉龙,刘帅兵. 2019
[9]基于无人机数码影像的玉米育种材料株高和LAI监测. 牛庆林,冯海宽,杨贵军,李长春,杨浩,徐波,赵衍鑫. 2018
[10]一款无人机高光谱传感器的验证及其在玉米叶面积指数反演中的应用. 陈鹏飞,李刚,石雅娇,徐志涛,杨粉团,曹庆军. 2018
[11]基于无人机的高光谱遥感图像采集和处理技术研究. 陈智虎,童倩倩,赵泽英,岳延滨. 2019
[12]基于无人机高光谱遥感的太行山经济林树种识别研究. 孙一丹,杨晓楠,张海涛,张爱军,庞立欣,郭艳超,郭雪涛,梁欣. 2024
[13]基于无人机成像高光谱估算马铃薯植株氮含量. 樊意广,冯海宽,刘杨,龙慧灵,杨贵军,钱建国. 2023
[14]无人机载框幅式高光谱影像的波段配准研究. 王晶晶,史云,刘含海. 2017
[15]无人机遥感的农作物精细分类研究进展. 田甜,王迪,曾妍,张影,黄青. 2020
[16]基于无人机低空高光谱遥感影像的柑橘黄龙病植株监测模型. 李敏,覃泽林,兰宗宝,方辉,余圣新,莫小香,谢国雪,曾志康. 2023
[17]病害胁迫下玉米LAI遥感反演研究. 刘帅兵,金秀良,冯海宽,聂臣巍,白怡,程明瀚. 2023
[18]不同品质类型冬小麦氮素积累及分布与运转特点. 赵淑章,季书勤,王绍中,赵献林. 2005
[19]高浓度CO_2对冬小麦旗叶和穗部氮吸收的影响. 韩雪,郝兴宇,王贺然,李迎春,林而达. 2012
[20]辐照土壤使作物增产及机理研究初报. 朱树秀,王佩芝,王燕凌,魏玉波,黄全生,樊哲儒. 1993
作者其他论文 更多>>
-
智慧农业科技创新引领农业新质生产力发展路径
作者:曹冰雪;李鸿飞;赵春江;李瑾
关键词:智慧农业;科技创新;农业新质生产力;数据要素;智能育种
-
果园风送喷雾风力调控试验台设计及试验
作者:李琪;窦汉杰;翟长远;高原源;杨硕;赵春江
关键词:果园精准施药;风力调控试验台;风送喷雾
-
基于实例分割技术的草莓叶龄及冠幅表型快速提取方法
作者:樊江川;王源桥;苟文博;蔡双泽;郭新宇;赵春江
关键词:移动式表型平台;实例分割;草莓表型;叶龄统计;冠幅;Mask R-CNN;ResNeSt
-
基于Sentinel-2时序数据的广东省英德市茶园分类研究
作者:陈盼盼;任艳敏;赵春江;李存军;刘玉
关键词:茶园;Sentinel-2;时序特征;机器学习;分类
-
无人机观测时间对玉米冠层叶绿素密度估算的影响
作者:周丽丽;冯海宽;聂臣巍;许晓斌;刘媛;孟麟;薛贝贝;明博;梁齐云;苏涛;金秀良
关键词:冠层叶绿素密度;观测时间;机器学习;PROSAIL模型;玉米
-
大田环境下的农业害虫图像小目标检测算法
作者:蒋心璐;陈天恩;王聪;赵春江
关键词:深度学习;目标检测;害虫检测;小目标检测;损失函数
-
内蒙古现代畜牧业发展研究
作者:赵春江
关键词:现代畜牧业;高质量发展;内蒙古