卷积神经网络在高分辨率影像分类中的应用

文献类型: 中文期刊

第一作者: 李贤江

作者: 李贤江;陈佑启;邹金秋;石淑芹;郭涛;蔡为民;陈浩

作者机构:

关键词: 高分一号;卷积神经网络;遥感;深度学习

期刊名称: 农业大数据学报

ISSN: NULL

年卷期: 2019 年 1 期

页码: 67-77

摘要: [目的]将CNN应用于高分辨率遥感影像的实际分类中,并与传统的分类方法进行对比分析,揭示出不同分类方法在高分辨率遥感影像中的分类精度和适用性问题.[方法]采用最大似然、平行六面体、 K-Means均值聚类和传统神经网络等四类常用的ENVI传统分类方法以及CNN分类法,并利用混淆矩阵和空间像元误差分析对不同分类方法的分类结果进行精度评价.[结果]根据分类精度对比分析发现在传统的四种ENVI分类方法中,传统神经网络和最大似然法的分类精度相对较好, K-Means均值聚类和平行六面体的分类精度相对较差, CNN的分类精度整体上要高于ENVI传统分类方法的精度.[结论]CNN在高分辨率遥感影像分类中能够较好地提取地物信息和地物的轮廓特征,在高分辨率遥感影像分类中具有良好的适用性.

分类号: S127

  • 相关文献

[1]基于深度学习模型的种植结构复杂区农作物精细分类研究. 田甜,王迪,王珍,李会宾. 2022

[2]基于6S模型的GF-1卫星影像大气校正及效果. 刘佳,王利民,杨玲波,滕飞,邵杰,杨福刚,富长虹. 2015

[3]基于多时相高分一号影像水稻监测精度评价与修正——以德阳地区为例. 王昕,李宗南,任国业. 2016

[4]深度学习方法在农业领域的研究及应用. 马聪,张建华,陈学东,朱丹. 2020

[5]基于深度卷积神经网络的红树林物种无人机监测研究. 黄亦其,刘琪,赵建晔,黄文善,孙中宇,乔曦. 2020

[6]基于卷积神经网络的农机图像自动识别研究. 雷雪梅,张光强,姚旗,刘伟渭,邱帅. 2022

[7]卷积神经网络在农业病虫害识别中的应用. 张耀丽,许宁,宋裕民,孟庆山,侯旭,李虎. 2023

[8]基于ResNet深度残差网络的白喉乌头检测. 梁俊欢,董峦,阿斯娅·曼力克,孙宗玖,魏鹏,马海燕,艾尼玩·艾买尔,阿仁,郑逢令. 2023

[9]一种基于深度学习的水稻种子分类方法. 王晓飞,刘维,巫浩翔,陈浩,张丽婷,潘朝阳,何秀英. 2024

[10]面向植物病害识别的卷积神经网络精简结构Distilled-MobileNet模型. 邱文杰,叶进,胡亮青,杨娟,李其利,莫贱友,易万茂. 2021

[11]一种边缘辅助的卫星影像云修复卷积神经网络. 张雨姝,戴佩玉. 2024

[12]基于卷积神经网络的家蚕病害识别研究. 石洪康,肖文福,黄亮,胡丛武,胡光荣,张剑飞. 2022

[13]基于Faster R-CNN网络的茶叶嫩芽检测. 朱红春,李旭,孟炀,杨海滨,徐泽,李振海. 2022

[14]基于卷积神经网络的家蚕幼虫品种智能识别研究. 石洪康,田涯涯,杨创,陈宇,粟思源,张智勇,张剑飞,蒋猛. 2020

[15]基于3-2D融和模型的毛虾捕捞渔船行为识别. 张佳泽,张胜茂,王书献,杨昱皞,戴阳,熊瑛. 2022

[16]基于卷积神经网络的水稻虫害识别. 梁万杰,曹宏鑫. 2017

[17]基于分层卷积神经网络的牧草种子识别模型. 王欣宇,马玉宝,潘新,闫伟红. 2021

[18]基于深度学习的杂草识别方法研究进展. 付豪,赵学观,翟长远,郑康,郑申玉,王秀. 2023

[19]常态养殖下妊娠母猪体质量智能测定模型. 肖德琴,刘俊彬,刘又夫,黄一桂,谭祖杰,熊本海. 2022

[20]深度学习在农业领域的研究与应用. 梁美静,毛克彪,郭中华,袁紫晋. 2024

作者其他论文 更多>>