基于卷积神经网络的田间麦穗检测方法研究

文献类型: 中文期刊

第一作者: 张合涛

作者: 张合涛;赵春江;王传宇;郭新宇;李大壮;苟文博

作者机构:

关键词: 小麦麦穗;卷积神经网络;特征提取;特征融合;损失函数;麦穗识别检测模型

期刊名称: 麦类作物学报

ISSN:

年卷期: 2023 年 006 期

页码: 798-807

收录情况: 北大核心 ; CSCD

摘要: 为提高卷积神经网络对麦穗的识别检测精度,在YOLOv5检测模型基础上提出改进的识别检测模型YOLOv5-αTB,在特征提取网络末端部分加入Transformer模块,强化特征提取网络对小麦麦穗图像的颜色、纹理、几何等特征的提取,在特征融合部分将路径聚合网络(path aggregation network, PANet)替换成加权双向特征金字塔(bidirectional feature pyramid network, BiFPN),进一步优化多尺度特征的融合。针对边界框回归损失函数的计算方式IoU的局限性,引入了α-CIoU加强了边界框回归的效果。利用YOLOv5-αTB检测模型在测试集上得到的精确度(precision)、召回率(recall)和平均精度(average precision, AP)分别是99.95%、81.86%和88.64%,在平均精度上相比于传统的YOLOv5模型提升2.92个百分点。该模型检测统计麦穗数量对比人工计数结果,识别检测精度约为97.00%。

分类号: S512.1%TP391.41%TP183

  • 相关文献

[1]基于卷积神经网络深度特征融合的番茄叶片病害检测. 杜忠康,房胜,李哲,郑纪业. 2021

[2]基于卷积模型的农业问答语性特征抽取分析. 张明岳,吴华瑞,朱华吉. 2018

[3]一种基于改进卷积神经网络的玉米病害高效识别模型. 王营瑛,郑铖,董伟,高海涛. 2023

[4]改进YOLOv4的温室环境下草莓生育期识别方法. 龙洁花,郭文忠,林森,文朝武,张宇,赵春江. 2021

[5]基于改进YOLOv5的甘蔗茎节识别方法. 赵文博,周德强,邓干然,何冯光,朱琦,韦丽娇,牛钊君. 2023

[6]大田环境下的农业害虫图像小目标检测算法. 蒋心璐,陈天恩,王聪,赵春江. 2024

[7]基于坐标注意力机制与高效边界框回归损失的线虫快速识别. 陆健强,梁效,余超然,兰玉彬,邱洪斌,黄捷伟,尹梓濠,陈慧洁,郑胜杰. 2022

[8]基于深度学习与多尺度特征融合的烤烟烟叶分级方法. 鲁梦瑶,周强,姜舒文,王聪,陈栋,陈天恩. 2022

[9]基于特征融合与冗余剔除的普洱茶种类电子鼻识别方法. 徐赛,张倩倩. 2020

[10]融合边特征与注意力的表格结构识别模型. 吕学强,张煜楠,韩晶,崔运鹏,李欢. 2023

[11]一种基于高光谱图像的熟牛肉TVB-N含量预测方法. 田卫新,何丹丹,杨东,陆安祥. 2016

[12]基于多特征融合和稀疏表示的农业害虫图像识别方法. 张永玲,姜梦洲,俞佩仕,姚青,杨保军,唐健. 2018

[13]无人机多光谱影像的小麦倒伏信息多特征融合检测研究. 朱文静,冯展康,戴世元,张平平,嵇文,王爱臣,魏新华. 2024

[14]多核学习算法及其在高光谱图像分类中的应用研究进展. 李广洋,寇卫利,陈帮乾,代飞,强振平,吴超. 2021

[15]改进YOLOv3的多尺度高分辨率特征增强图像目标检测. 杨文姬,李浩,王映龙,梅梦. 2023

[16]基于多光谱成像技术的小麦品种快速无损鉴定. 许学,马卉,王钰,刘伟,杨剑波,汪秀峰. 2019

[17]田间害虫图像识别中的特征提取与分类器设计研究. 张红涛,胡玉霞,赵明茜,邱道尹,张孝远,张恒源. 2008

[18]近红外光谱的苹果内部品质在线检测模型优化. 郭志明,黄文倩,陈全胜,彭彦昆,赵杰文. 2016

[19]基于视频的植物动画合成方法. 蒋艳娜,肖伯祥,郭新宇,杨宝祝. 2015

[20]基于线结构光视觉的穴盘苗外形参数在线测量系统研制及试验. 冯青春,刘新南,姜凯,范鹏飞,王秀. 2013

作者其他论文 更多>>