基于CNN-BiLSTM和残差注意力的县域水稻产量预测模型

文献类型: 中文期刊

第一作者: 梁泽

作者: 梁泽;曹姗姗;孔繁涛;孙伟

作者机构:

关键词: 水稻产量预测;卷积神经网络;双向长短期记忆网络;残差注意力

期刊名称: 湖北农业科学

ISSN: 0439-8114

年卷期: 2024 年 008 期

页码: 109-115

收录情况: 北大核心

摘要: 提出一种融合卷积神经网络(CNN)、双向长短期记忆网络(BiLSTM)和残差注意力(RA)机制的县域水稻产量预测模型(CNN-BiLSTM-RA),通过CNN层有效提取县域水稻气象数据中的关键空间特征,利用BiLSTM层深入分析时间序列数据的动态变化,引入RA机制强化对气象数据中关键特征的识别与捕捉,以2015—2017年广西81个县早稻历史产量和气象数据为样本,与CNN、TRANSFORMER、BiLSTM、CNN-BiLSTM、BiLSTM-RA模型进行对比,评价CNN-BiLSTM-RA模型的预测精度和有效性。结果表明,CNN-BiLSTM-RA模型的R2、MAE、RMSE和MAPE分别为0.986 1、0.121 9、0.224 8、0.864 8,模型的预测值与实际值拟合程度较高。CNN-BiLSTM-RA模型充分发挥了CNN的空间特征提取能力、BiLSTM的时间序列数据分析优势和RA机制在增强关键特征捕捉方面的特性,是一种适用于县域水稻产量高精度预测的新方法。

分类号: TP183%S511

  • 相关文献

[1]基于多语义特征的农业短文本匹配技术. 金宁,赵春江,吴华瑞,缪祎晟,王海琛,杨宝祝. 2022

[2]基于特征增强的多方位农业问句语义匹配. 王奥,吴华瑞,朱华吉. 2023

[3]基于双向长短期记忆网络的流体高精度识别新方法. 周雪晴,张占松,朱林奇,张超谟. 2021

[4]深度学习方法在农业领域的研究及应用. 马聪,张建华,陈学东,朱丹. 2020

[5]基于深度卷积神经网络的红树林物种无人机监测研究. 黄亦其,刘琪,赵建晔,黄文善,孙中宇,乔曦. 2020

[6]基于卷积神经网络的农机图像自动识别研究. 雷雪梅,张光强,姚旗,刘伟渭,邱帅. 2022

[7]小样本卷积神经网络井震映射反演. 安振芳,张进,张建中,邢磊,黄忠来. 2020

[8]采用卷积神经网络构建西北太平洋柔鱼渔场预报模型. 朱浩朋,伍玉梅,唐峰华,靳少非,裴凯洋,崔雪森. 2020

[9]基于SVM和CNN组合模型的黄瓜病斑叶片检测与识别. 王浩,王建春,李凤菊,钱春阳,张雪飞,徐义鑫,吕雄杰,杜彦芳,宋斌. 2020

[10]基于轻量化卷积神经网络的改进模型与验证. 李润龙,王运圣,徐识溥,刘勇. 2020

[11]基于VGG-16卷积神经网络的海水养殖病害诊断. 李海涛,王腾,王印庚. 2020

[12]基于卷积神经网络的水稻纹枯病图像识别. 刘婷婷,王婷,胡林. 2019

[13]基于U-Net的甘蔗提取方法. 董秀春,蒋怡,王思,李宗南,王昕. 2019

[14]卷积神经网络在农业病虫害识别中的应用. 张耀丽,许宁,宋裕民,孟庆山,侯旭,李虎. 2023

[15]融合语义特征与边缘特征的枸杞空间分布提取. 尹昊,张承明,李剑萍,韩颖娟,侯学会. 2022

[16]基于ResNet深度残差网络的白喉乌头检测. 梁俊欢,董峦,阿斯娅·曼力克,孙宗玖,魏鹏,马海燕,艾尼玩·艾买尔,阿仁,郑逢令. 2023

[17]一种基于深度学习的水稻种子分类方法. 王晓飞,刘维,巫浩翔,陈浩,张丽婷,潘朝阳,何秀英. 2024

[18]基于深度学习模型的种植结构复杂区农作物精细分类研究. 田甜,王迪,王珍,李会宾. 2022

[19]面向植物病害识别的卷积神经网络精简结构Distilled-MobileNet模型. 邱文杰,叶进,胡亮青,杨娟,李其利,莫贱友,易万茂. 2021

[20]卷积神经网络在农业遥感图像语义分割中的应用综述. 徐乐园,毛克彪,郭中华,葛非凡,赵瑞. 2024

作者其他论文 更多>>