基于可见光谱和改进注意力的农作物病害识别

文献类型: 中文期刊

第一作者: 孙文斌

作者: 孙文斌;王荣;高荣华;李奇峰;吴华瑞;冯璐

作者机构:

关键词: 病害识别;图像分类;注意力机制;残差网络

期刊名称: 光谱学与光谱分析

ISSN: 1000-0593

年卷期: 2022 年 42 卷 005 期

页码: 1572-1580

收录情况: EI ; SCI ; 北大核心 ; CSCD

摘要: 基于可见光谱的农作物病害自动化识别和诊断是一个具有挑战性的研究领域,但现有基于卷积神经网络进行病害识别的研究往往利用深层网络牺牲模型参数量来提高对单一农作物病害识别的准确率,从而造成硬件资源的浪费.为提高农作物病害识别的准确率且避免深层网络的使用,该研究将注意力机制引入农作物病害识别领域,提出了一种基于可见光谱和改进注意力机制的浅层农作物病害识别模型,设计了新的注意力模块SMLP和农作物病害识别模型SMLP_ResNet.利用卷积层代替全连接层设计参数量较少的残差网络(ResNet),然后利用SMLP、归一化结构(Batch Normalization)和残差模块(Res_block)得到改进的残差模块单元(SMLP_Res),其中SMLP由全局池化和多层感知机组成,建立各通道间依赖关系.多层感知机使用三层网络结构,将全局特征的通道维度提升至两倍,然后对其通道维度进行两次降维,恢复至原始维度,减少了全局特征损失.SMLP_Res可对通道中的病害特征重校准,减少对识别任务无效的冗余信息,最后构建农作物病害识别模型SMLP_ResNet,在减少模型层数同时提高其识别率.使用两个不同难度的多种植物和病害混合的公开数据集AI Challenger 2018和Plant Village验证本文模型.实验结果表明,SMLP_ResNet模型在18、50和101层时达到了较高的识别率,其中SMLP_ResNet18模型效果最佳,在两个数据集中的病害识别率分别为86.93% 和99.32%.SMLP_ResNet18的准确率不仅高于改进前的ResNet18和SENet18网络,还高于其他研究者提出的模型的准确率,且模型权重大小为48.6 MB,仅约为AlexNet网络权重的五分之一,能够在模型参数量较小的情况下实现较高的病害识别率.从Grad-CAM生成的热力图中可看出SMLP_ResNet18相比于其他模型更关注于叶片病害部位的特征,其背景信息以及叶片健康部位的权值较小.该研究所提出的SMLP_ResNet18模型实现了浅层网络下的高精度识别,提高了对叶片病害区域的辨识度,减少了背景等冗余特征的影响,适用于面向多种农作物不同病害下的高精度识别.

分类号: TP391.4

  • 相关文献

[1]基于注意力机制和多尺度残差网络的农作物病害识别. 黄林生,罗耀武,杨小冬,杨贵军,王道勇. 2021

[2]基于多尺度和注意力机制的番茄病害识别方法. 张宁,吴华瑞,韩笑,缪祎晟. 2021

[3]基于深度学习分类模型的4种果树物候期识别. 钟丹,李宗南,王思,黄平,邱霞,蒋怡. 2023

[4]基于深度残差网络的番茄叶片病害识别方法. 吴华瑞. 2019

[5]改进Mask R-CNN的温室环境下不同成熟度番茄果实分割方法. 龙洁花,赵春江,林森,郭文忠,文朝武,张宇. 2021

[6]基于改进YOLO v3-tiny的全景图像农田障碍物检测. 陈斌,张漫,徐弘祯,李寒,尹彦鑫. 2021

[7]基于深度残差网络的麦穗回归计数方法. 刘航,刘涛,李世娟,李路华,吕纯阳,刘升平. 2021

[8]融合ResNet与支持向量机的葡萄园冠层图像叶片覆盖度分类. 代国威,陈稼瑜,樊景超. 2023

[9]基于HOG+SVM的田间水稻病害图像识别方法研究. 马超,袁涛,姚鑫锋,籍延宝,李琳一. 2019

[10]基于图像的水稻病害识别方法研究. 管泽鑫,唐健,杨保军,周营烽,范德耀,姚青. 2010

[11]面向植物病害识别的卷积神经网络精简结构Distilled-MobileNet模型. 邱文杰,叶进,胡亮青,杨娟,李其利,莫贱友,易万茂. 2021

[12]设施温室影像采集与环境监测机器人系统设计及应用. 郭威,吴华瑞,朱华吉. 2020

[13]基于卷积神经网络的家蚕病害识别研究. 石洪康,肖文福,黄亮,胡丛武,胡光荣,张剑飞. 2022

[14]一种马铃薯病害神经网络识别方法. 刘飞,董伟,高海涛. 2022

[15]黄瓜三大病害识别及其综合防治. 孟攀奇. 2004

[16]基于注意力机制与EfficientNet的轻量化水稻病害识别方法. 卫雅娜,王志彬,乔晓军,赵春江. 2022

[17]基于对比学习的植物叶片病害识别. 杨新宇,冯全,张建华,杨森. 2024

[18]一种基于深度学习的玉米病害识别方法. 郑铖,董伟,高海涛. 2023

[19]基于机器视觉的农作物病害识别研究进展. 麻剑钧,刘晓慈,金龙新,熊伟,易森林,封春芳,刘阳,夏先亮. 2023

[20]基于深度学习的农作物病害识别系统研发. 梁万杰,曹静,孙传亮,曹宏鑫,张文宇. 2023

作者其他论文 更多>>