Proteins in pregnant swine serum promote the African swine fever virus replication: an iTRAQ-based quantitative proteomic analysis
文献类型: 外文期刊
第一作者: Yang, Jinke
作者: Yang, Jinke;Yuan, Xingguo;Hao, Yu;Shi, Xijuan;Yang, Xing;Yan, Wenqian;Chen, Lingling;Zhang, Dajun;Shen, Chaochao;Li, Dan;Zhu, Zixiang;Liu, Xiangtao;Zheng, Haixue;Zhang, Keshan
作者机构:
关键词: African swine fever virus; Pregnant swine serum; iTRAQ; DEPs; PCNA
期刊名称:VIROLOGY JOURNAL ( 影响因子:4.8; 五年影响因子:3.9 )
ISSN:
年卷期: 2023 年 20 卷 1 期
页码:
收录情况: SCI
摘要: African swine fever (ASF) is a severe infectious disease caused by the African swine fever virus (ASFV), seriously endangering the global pig industry. ASFV possesses a large genome, strong mutation ability, and complex immune escape mechanisms. Since the first case of ASF was reported in China in August 2018, it has had a significant impact on social economy and food safety. In the present study, pregnant swine serum (PSS) was found to promote viral replication; differentially expressed proteins (DEPs) in PSS were screened and identified using the isobaric tags for relative and absolute quantitation technology and compared with those in non-pregnant swine serum (NPSS). The DEPs were analyzed using Gene Ontology functional annotation, Kyoto Protocol Encyclopedia of Genes and Genome pathway enrichment, and protein-protein interaction networks. In addition, the DEPs were validated via western blot and RT-qPCR experiments. And the 342 of DEPs were identified in bone marrow-derived macrophages cultured with PSS compared with the NPSS. The 256 were upregulated and 86 of DEPs were downregulated. The primary biological functions of these DEPs involved signaling pathways that regulate cellular immune responses, growth cycles, and metabolism-related pathways. An overexpression experiment showed that the PCNA could promote ASFV replication whereas MASP1 and BST2 could inhibit it. These results further indicated that some protein molecules in PSS were involved in the regulation of ASFV replication. In the present study, the role of PSS in ASFV replication was analyzed using proteomics, and the study will be provided a basis for future detailed research on the pathogenic mechanism and host interactions of ASFV as well as new insights for the development of small-molecule compounds to inhibit ASFV.
分类号:
- 相关文献
作者其他论文 更多>>
-
ASFV infection induces macrophage necroptosis and releases proinflammatory cytokine by ZBP1-RIPK3-MLKL necrosome activation
作者:Zhang, Dajun;Hao, Yu;Yang, Xing;Shi, Xijuan;Zhao, Dengshuai;Chen, Lingling;Liu, Huanan;Zhu, Zixiang;Zheng, Haixue
关键词:ASFV; host macrophages; necroptosis signaling; ZBP1; Z-DNA; proinflammatory cytokines
-
First Report and Genetic Characterization of Border Disease Virus in Sheep from Hulunbuir, Northeastern China
作者:Yuan, Yongxu;Li, Liang;Liu, Ziyan;Liu, Quan;Wang, Zedong;Yuan, Yongxu;Liu, Ziyan;Xu, Wenbo;Liu, Ning;Sui, Liyan;Zhao, Yinghua;Liu, Quan;Wang, Zedong;Yang, Xing;Wang, Wei
关键词:
-
African Swine Fever Virus I267L Is a Hemorrhage-Related Gene Based on Transcriptome Analysis
作者:Wen, Yuan;Duan, Xianghan;Ren, Jingjing;Zhang, Jing;Guan, Guiquan;Ru, Yi;Li, Dan;Zheng, Haixue;Wen, Yuan;Duan, Xianghan;Ren, Jingjing;Zhang, Jing;Guan, Guiquan;Ru, Yi;Li, Dan;Zheng, Haixue
关键词:African swine fever virus; I267L; hemorrhage; F3; tissue factor
-
A Novel Quercetin Encapsulated Glucose Modified Liposome and Its Brain-Target Antioxidative Neuroprotection Effects
作者:Chen, Jian;Xia, Chen;Deng, Junlin;Yu, Manyou;Xiang, Zuoya;Gan, Lu;Zhu, Boyu;Yang, Xing;Chen, Jinxia;Yu, Peiyun;Yang, Chunyan;Wu, Yong
关键词:quercetin; neuroprotection; brain-target; liposome; antioxidant
-
Comprehensive Analysis of Phenolic Constituents, Biological Activities, and Derived Aroma Differences of Penthorum chinense Pursh Leaves after Processing into Green and Black Tea
作者:Xiang, Zhuoya;Zhu, Boyu;Yang, Xing;Deng, Junlin;Zhu, Yongqing;Gan, Lu;Yu, Manyou;Chen, Jian;Xia, Chen;Chen, Song
关键词:P. chinense leaves; processing; phenolic constituents; volatile compounds; biological activities
-
Exploring the role of GhN/AINV23: implications for plant growth, development, and drought tolerance
作者:Qiao, Kaikai;Ma, Qifeng;Fan, Shuli;Qiao, Kaikai;Chen, Lingling;Hao, Juxin;Ma, Qifeng;Fan, Shuli;Zeng, Qingtao;Lv, Jiaoyan;Wang, Ding
关键词:GhN/AINV23; Bioinformatics; Subcellular localization; Plant growth; Drought stress
-
Single- cell profiling of African swine fever virus disease in the pig spleen reveals viral and host dynamics
作者:Zhu, Zixiang;Mao, Ruoqing;Liu, Baohong;Liu, Huanan;Shi, Zhengwang;Zhang, Kunpeng;Liu, Huisheng;Zhang, Danyang;Liu, Jia;Zhao, Zhenxiang;Li, Kangli;Yang, Fan;Cao, Weijun;Zhang, Xiangle;Shen, Chaochao;Sun, Dehui;Tian, Hong;Ru, Yi;Feng, Tao;He, Jijun;Guo, Jianhong;Zhang, Keshan;Zhang, Shilei;Zheng, Haixue;Mao, Ruoqing;Liu, Huanan;He, Jijun;Guo, Jianhong;Zheng, Haixue;Liu, Huanan;Shi, Zhengwang;Zhang, Xiangle;Shen, Chaochao;He, Jijun;Guo, Jianhong;Zheng, Haixue;Wang, Liyuan;Tang, Zhonglin;Ding, Chan;Han, Jun
关键词:African swine fever virus; single- cell RNA sequencing; host antiviral response; monocytes; cellular tropism