Natural variation in the NAC transcription factor NONRIPENING contributes to melon fruit ripening

文献类型: 外文期刊

第一作者: Wang, Jinfang

作者: Wang, Jinfang;Tian, Shouwei;Yu, Yongtao;Ren, Yi;Guo, Shaogui;Zhang, Jie;Li, Maoying;Zhang, Haiying;Gong, Guoyi;Xu, Yong;Wang, Min

作者机构:

关键词: climacteric fruit; fruit ripening; melon; NAC transcription factor

期刊名称:JOURNAL OF INTEGRATIVE PLANT BIOLOGY ( 影响因子:9.106; 五年影响因子:8.241 )

ISSN: 1672-9072

年卷期: 2022 年 64 卷 7 期

页码:

收录情况: SCI

摘要: The NAC transcription factor NONRIPENING (NOR) is a master regulator of climacteric fruit ripening. Melon (Cucumis melo L.) has climacteric and non-climacteric fruit ripening varieties and is an ideal model to study fruit ripening. Two natural CmNAC-NOR variants, the climacteric haplotype CmNAC-NORS,N and the non-climacteric haplotype CmNAC-NORA,S, have effects on fruit ripening; however, their regulatory mechanisms have not been elucidated. Here, we report that a natural mutation in the transcriptional activation domain of CmNAC-NORS,N contributes to climacteric melon fruit ripening. CmNAC-NOR knockout in the climacteric-type melon cultivar "BYJH" completely inhibited fruit ripening, while ripening was delayed by 5-8 d in heterozygous cmnac-nor mutant fruits. CmNAC-NOR directly activated carotenoid, ethylene, and abscisic acid biosynthetic genes to promote fruit coloration and ripening. Furthermore, CmNAC-NOR mediated the transcription of the "CmNAC-NOR-CmNAC73-CmCWINV2" module to enhance flesh sweetness. The transcriptional activation activity of the climacteric haplotype CmNAC-NORS,N on these target genes was significantly higher than that of the non-climacteric haplotype CmNAC-NORA,S. Moreover, CmNAC-NORS,N complementation fully rescued the non-ripening phenotype of the tomato (Solanum lycopersicum) cr-nor mutant, while CmNAC-NORA,S did not. Our results provide insight into the molecular mechanism of climacteric and non-climacteric fruit ripening in melon.

分类号:

  • 相关文献
作者其他论文 更多>>