Regulation of Nicotine Biosynthesis by an Endogenous Target Mimicry of MicroRNA in Tobacco
文献类型: 外文期刊
第一作者: Li, Fangfang
作者: Li, Fangfang;Wang, Weidi;Zhao, Nan;Ye, Chuyu;Shen, Enhui;Qiu, Jie;Fan, Longjiang;Li, Fangfang;Wang, Weidi;Zhao, Nan;Ye, Chuyu;Shen, Enhui;Qiu, Jie;Fan, Longjiang;Li, Fangfang;Zhao, Nan;Zhou, Xueping;Xiao, Bingguang;Wu, Xingfu;Cao, Peijian;Zhu, Qian-Hao;Xie, Jiahua
作者机构:
期刊名称:PLANT PHYSIOLOGY ( 影响因子:8.34; 五年影响因子:8.972 )
ISSN: 0032-0889
年卷期: 2015 年 169 卷 2 期
页码:
收录情况: SCI
摘要: The interaction between noncoding endogenous target mimicry (eTM) and its corresponding microRNA (miRNA) is a newly discovered regulatory mechanism and plays pivotal roles in various biological processes in plants. Tobacco (Nicotiana tabacum) is a model plant for studying secondary metabolite alkaloids, of which nicotine accounts for approximately 90%. In this work, we identified four unique tobacco-specific miRNAs that were predicted to target key genes of the nicotine biosynthesis and catabolism pathways and an eTM, novel tobacco miRNA (nta)-eTMX27, for nta-miRX27 that targets QUINOLINATE PHOSPHORIBOSYLTRANSFERASE2 (QPT2) encoding a quinolinate phosphoribosyltransferase. The expression level of nta-miRX27 was significantly down-regulated, while that of QPT2 and nta-eTMX27 was significantly up-regulated after topping, and consequently, nicotine content increased in the topping-treated plants. The topping-induced down-regulation of nta-miRX27 and up-regulation of QPT2 were only observed in plants with a functional nta-eTMX27 but not in transgenic plants containing an RNA interference construct targeting nta-eTMX27. Our results demonstrated that enhanced nicotine biosynthesis in the topping-treated tobacco plants is achieved by nta-eTMX27-mediated inhibition of the expression and functions of nta-miRX27. To our knowledge, this is the first report about regulation of secondary metabolite biosynthesis by an miRNA-eTM regulatory module in plants.
分类号: Plant Sciences
- 相关文献
作者其他论文 更多>>
-
Preferential extraction of degraded organic matter and mineral protection of aromatic structures based on molecular marker analysis
作者:Li, Yuxuan;Li, Fangfang;He, Xinhua;Wu, Min;Guo, Jiawen;Gao, Xinxin;He, Xinhua
关键词:Plant-derived biomolecules; Pyrogenic carbons; Stabilization; Organo-mineral complexes; Sediment
-
Diverse nucleotide substitutions in rice base editing mediated by novel TadA variants
作者:Yu, Man;Kuang, Yongjie;Wang, Chenyang;Wu, Xuemei;Zhou, Xueping;Ren, Bin;Zhou, Huanbin;Yu, Man;Sun, Wenxian;Wu, Xuemei;Ren, Bin;Zhou, Huanbin;Wu, Xuemei;Zhang, Dawei;Li, Shaofang;Zhou, Xueping;Zhou, Huanbin
关键词:CRISPR; TadA variants; cytosine base editing; dual base editor; rice
-
Developing guanine base editors for G-to-T editing in rice
作者:Liu, Lang;Zhang, Zhongming;Wang, Chenyang;Yan, Fang;Zhou, Huanbin;Liu, Lang;Sun, Wenxian;Liu, Lang;Zhou, Huanbin;Zhang, Zhongming;Miao, Weiguo;Zhou, Xueping;Zhou, Huanbin
关键词:
-
Carbon nanosol promotes plant growth and broad-spectrum resistance
作者:Li, Dandan;Li, Tianmiao;Xuan, Yuan Hu;Li, Dandan;Li, Tianmiao;Xuan, Yuan Hu;Li, Dandan;Li, Tianmiao;Yang, Xujie;Wang, Hujun;Chu, Jin;Dong, Hai;Lu, Peng;Tao, Jiemeng;Cao, Peijian;Jin, Jingjing;Cao, Peijian;Jin, Jingjing
关键词:Carbon nanosol; Promote; Plant growth; Broad-spectrum; Resistance
-
Resistance to Planthoppers and Southern Rice Black-Streaked Dwarf Virus in Rice Germplasms
作者:Yu, Wenjuan;Xu, Zhi;Zhong, Xuelian;Ji, Hongli;Peng, Yunliang;He, Jiachun;Lai, Fengxiang;Fu, Qiang;Peng, Yunliang;Wu, Jianxiang;Zhou, Xueping;Zhang, Mei;Zhou, Xueping
关键词:Nilaparvata lugens; resistance; rice germplasm; Sogatella furcifera; Southern rice black-streaked dwarf virus
-
A Negative Feedback Loop Compromises NMD-Mediated Virus Restriction by the Autophagy Pathway in Plants
作者:Chen, Yalin;Jia, Mingxuan;Ge, Linhao;Li, Zhaolei;He, Hao;Zhou, Xueping;Li, Fangfang;Zhou, Xueping
关键词:autophagic degradation; nonsense mediated RNA decay; SMG7; UPF3; virus restriction
-
The C4 Protein of TbLCYnV Promotes SnRK1 β2 Degradation Via the Autophagy Pathway to Enhance Viral Infection in N. benthamiana
作者:Li, Xinquan;Zhao, Min;Yang, Wanyi;Zhou, Xueping;Xie, Yan;Zhou, Xueping
关键词:SnRK1; NbSnRK1 beta 2; TbLCYnV C4; interaction; degradation; autophagy pathway