NbPHAN, a MYB transcriptional factor, regulates leaf development and affects drought tolerance in Nicotiana benthamiana
文献类型: 外文期刊
第一作者: Huang, Changjun
作者: Huang, Changjun;Hu, Gaojie;Li, Fangfang;Wu, Jianxiang;Zhou, Xueping;Li, Yunqin
作者机构:
期刊名称:PHYSIOLOGIA PLANTARUM ( 影响因子:4.5; 五年影响因子:4.576 )
ISSN: 0031-9317
年卷期: 2013 年 149 卷 3 期
页码:
收录情况: SCI
摘要: MYB transcriptional factors, characterized by the presence of conserved DNA-binding domains (BDs) (MYB domain), are involved in diverse processes including plant growth, development, metabolic and stress responses. In this study, a new R2R3-type MYB gene, NbPHAN (Nicotiana benthamiana PHANTASTICA), was identified in N. benthamiana. The NbPHAN encodes a protein of 362 amino acids and shares high sequence identities with the AS1-RS2-PHANs (ARPs) from other plant species. The NbPHAN protein targets to and forms homodimers in the nucleus. The MYB domain and C-terminal region of NbPHAN determine its subcellular localization and homodimerization, respectively. Using virus-induced gene silencing, we showed that the NbPHAN-silenced leaves exhibited severe downward curling and abnormal growth of blades along the main veins through suppressing the expression of the NTH20 gene. In addition, we found NbPHAN plays an important role in drought tolerance. The NbPHAN-silenced plants exhibited severe wilting and increased rate of water loss than that found in the non-silenced plants when growing under the water deficit condition. Although abscisic acid accumulation was not altered in the NbPHAN-silenced plants as compared with that in the non-silenced plants, several other stress-inducible genes were clearly repressed under the water deficit condition. Our results provide strong evidence that other than controlling leaf development, the ARP genes can also regulate plant tolerance to drought stress.
分类号: Plant Sciences
- 相关文献
作者其他论文 更多>>
-
Preferential extraction of degraded organic matter and mineral protection of aromatic structures based on molecular marker analysis
作者:Li, Yuxuan;Li, Fangfang;He, Xinhua;Wu, Min;Guo, Jiawen;Gao, Xinxin;He, Xinhua
关键词:Plant-derived biomolecules; Pyrogenic carbons; Stabilization; Organo-mineral complexes; Sediment
-
Diverse nucleotide substitutions in rice base editing mediated by novel TadA variants
作者:Yu, Man;Kuang, Yongjie;Wang, Chenyang;Wu, Xuemei;Zhou, Xueping;Ren, Bin;Zhou, Huanbin;Yu, Man;Sun, Wenxian;Wu, Xuemei;Ren, Bin;Zhou, Huanbin;Wu, Xuemei;Zhang, Dawei;Li, Shaofang;Zhou, Xueping;Zhou, Huanbin
关键词:CRISPR; TadA variants; cytosine base editing; dual base editor; rice
-
Developing guanine base editors for G-to-T editing in rice
作者:Liu, Lang;Zhang, Zhongming;Wang, Chenyang;Yan, Fang;Zhou, Huanbin;Liu, Lang;Sun, Wenxian;Liu, Lang;Zhou, Huanbin;Zhang, Zhongming;Miao, Weiguo;Zhou, Xueping;Zhou, Huanbin
关键词:
-
Resistance to Planthoppers and Southern Rice Black-Streaked Dwarf Virus in Rice Germplasms
作者:Yu, Wenjuan;Xu, Zhi;Zhong, Xuelian;Ji, Hongli;Peng, Yunliang;He, Jiachun;Lai, Fengxiang;Fu, Qiang;Peng, Yunliang;Wu, Jianxiang;Zhou, Xueping;Zhang, Mei;Zhou, Xueping
关键词:Nilaparvata lugens; resistance; rice germplasm; Sogatella furcifera; Southern rice black-streaked dwarf virus
-
A Negative Feedback Loop Compromises NMD-Mediated Virus Restriction by the Autophagy Pathway in Plants
作者:Chen, Yalin;Jia, Mingxuan;Ge, Linhao;Li, Zhaolei;He, Hao;Zhou, Xueping;Li, Fangfang;Zhou, Xueping
关键词:autophagic degradation; nonsense mediated RNA decay; SMG7; UPF3; virus restriction
-
The C4 Protein of TbLCYnV Promotes SnRK1 β2 Degradation Via the Autophagy Pathway to Enhance Viral Infection in N. benthamiana
作者:Li, Xinquan;Zhao, Min;Yang, Wanyi;Zhou, Xueping;Xie, Yan;Zhou, Xueping
关键词:SnRK1; NbSnRK1 beta 2; TbLCYnV C4; interaction; degradation; autophagy pathway
-
Rubisco small subunit (RbCS) is co-opted by potyvirids as the scaffold protein in assembling a complex for viral intercellular movement
作者:Qin, Li;Liu, Hongjun;Liu, Peilan;Jiang, Lu;Dai, Zhaoji;Cui, Hongguang;Qin, Li;Liu, Hongjun;Liu, Peilan;Jiang, Lu;Dai, Zhaoji;Cui, Hongguang;Jiang, Lu;Li, Fangfang;Cheng, Xiaofei;Shen, Wentao;Qiu, Wenping
关键词: