Role of rice stripe virus NSvc4 in cell-to-cell movement and symptom development in Nicotiana benthamiana

文献类型: 外文期刊

第一作者: Xu, Yi

作者: Xu, Yi;Zhou, Xueping

作者机构:

关键词: rice stripe virus;movement;chloroplast;tubules

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.753; 五年影响因子:6.612 )

ISSN: 1664-462X

年卷期: 2012 年 3 卷

页码:

收录情况: SCI

摘要: Our previous work has demonstrated that the NSvc4 protein of Rice stripe virus (RSV) functions as a cell-to-cell movement protein. However, the mechanisms whereby RSV traffics through plasmodesmata (PD) are unknown. Here we provide evidence that the NSvc4 moves on the actin filament and endoplasmic reticulum network, but not microtubules, to reach cell wall PD. Disruption of cytoskeleton using different inhibitors altered NSvc4 localization to PD, thus impeding RSV infection of Nicotiana benthamiana. Sequence analyses and deletion mutagenesis experiment revealed that the N-terminal 125 amino acids (AAs) of the NSvc4 determine PD targeting and that a transmembrane domain spanning AAs 106-125 is critical for PD localization. We also found that the NSvc4 protein can localize to chloroplasts in infected cells. Analyses using deletion mutants revealed that the N-terminal 73 AAs are essential for chloroplast localization. Furthermore, expression of NSvc4 from a Potato virus X (PVX) vector resulted in more severe disease symptoms than PVX alone in systemically infected N. benthamiana leaves. Expression of NSvc4 in Spodoptera frugiperda 9 cells did not elicit tubule formation, but instead resulted in punctate foci at the plasma membrane. These findings shed new light on our understanding of the movement mechanisms whereby RSV infects host plants.

分类号: Plant Sciences

  • 相关文献

[1]Rice Stripe Virus Interferes with S-acylation of Remorin and Induces Its Autophagic Degradation to Facilitate Virus Infection. Xu, Yi,Li, Chenyang,Wu, Jianxiang,Zhou, Xueping,Li, Chenyang,Zhou, Xueping,Li, Yi,Xu, Yi. 2018

[2]A transmembrane domain determines the localization of rice stripe virus pc4 to plasmodesmata and is essential for its function as a movement protein. Rong, Lingling,Lu, Yuwen,Lin, Lin,Zheng, Hongying,Yan, Fei,Chen, Jianping.

[3]Functional analysis of a viroid RNA motif mediating cell-to-cell movement in Nicotiana benthamiana. Wang, Meng,Jiang, Dongmei,Li, Shifang,Jiang, Dongmei.

[4]Production of transgenic rice new germplasm with strong resistance against two isolations of Rice stripe virus by RNA interference. Ma, Jin,Song, Yunzhi,Wu, Bin,Li, Kaidong,Zhu, Changxiang,Wen, Fujiang,Jiang, Mingsong. 2011

[5]Production of marker-free and RSV-resistant transgenic rice using a twin T-DNA system and RNAi. Jiang, Yayuan,Sun, Lin,Li, Kaidong,Song, Yunzhi,Zhu, Changxiang,Jiang, Mingsong.

[6]Virus resistance obtained in transgenic tobacco and rice by RNA interference using promoters with distinct activity. Zhang, C.,Song, Y.,Jiang, F.,Jiang, Y.,Zhu, C.,Wen, F.,Li, G..

[7]Dimeric artificial microRNAs mediate high resistance to RSV and RBSDV in transgenic rice plants. Sun, Lin,Lin, Chao,Du, Jinwen,Song, Yunzhi,Liu, Hongmei,Zhou, Shumei,Wen, Fujiang,Zhu, Changxiang,Jiang, Mingsong.

[8]Inheritance of resistance to rice stripe virus in rice line 'BL 1'. Ise, K,Ishikawa, K,Li, CY,Ye, CR. 2002

[9]Overexpression of OsCIPK30 Enhances Plant Tolerance to Rice stripe virus. Liu, Zhiyang,Li, Xuejuan,Sun, Feng,Zhou, Tong,Zhou, Yijun,Liu, Zhiyang,Li, Xuejuan,Sun, Feng,Zhou, Tong,Zhou, Yijun. 2017

[10]Characterization and subcellular localization of an RNA silencing suppressor encoded by Rice stripe tenuivirus. Xiong, Ruyi,Wu, Jianxiang,Zhou, Xueping,Zhou, Yijun. 2009

[11]RNA interference of E75 nuclear receptor gene suppresses transmission of rice stripe virus in Laodelphax striatellus. Fang, Ying,Lee, Seok Hee,Kim, Jong Hoon,Park, Dong Hwan,Park, Min Gu,Woo, Ra Mi,Lee, Bo Ram,Kim, Woo Jin,Je, Yeon Ho,Choi, Jae Young,Je, Yeon Ho,Li, Shuo. 2017

[12]Over-expression of Oryza sativa Xrn4 confers plant resistance to virus infection. Jiang, Shanshan,Jiang, Liangliang,Jiang, Shanshan,Yang, Jian,Peng, Jiejun,Lu, Yuwen,Zheng, Hongying,Lin, Lin,Chen, Jianping,Yan, Fei,Yang, Jian,Peng, Jiejun,Lu, Yuwen,Zheng, Hongying,Lin, Lin,Chen, Jianping,Yan, Fei. 2018

[13]Arabidopsis is Susceptible to Rice stripe virus Infections. Sun, Feng,Yuan, Xia,Zhou, Tong,Fan, Yongjian,Zhou, Yijun,Yuan, Xia. 2011

[14]RNA-seq-based digital gene expression analysis reveals modification of host defense responses by rice stripe virus during disease symptom development in Arabidopsis. Sun, Feng,Fang, Peng,Li, Juan,Du, Linlin,Lan, Ying,Zhou, Tong,Fan, Yongjian,Zhou, Yijun,Fang, Peng,Shen, Wenbiao. 2016

[15]Altered accumulation of osa-miR171b contributes to rice stripe virus infection by regulating disease symptoms. Tong, Aizi,Yuan, Quan,Wang, Shu,Peng, Jiejun,Lu, Yuwen,Zheng, Hongying,Lin, Lin,Chen, Jianping,Yan, Fei,Tong, Aizi,Chen, Hairu,Yuan, Quan,Gong, Yifu,Wang, Shu. 2017

[16]Investigation on subcellular localization of Rice stripe virus in its vector small brown planthopper by electron microscopy. Deng, Jinhua,Li, Shuo,Ji, Yinghua,Zhou, Yijun,Deng, Jinhua,Hong, Jian. 2013

[17]Transcription of ORFs on RNA2 and RNA4 of Rice stripe virus terminate at an AUCCGGAU sequence that is conserved in the genus Tenuivirus. Wu, Gentu,Wu, Gentu,Lu, Yuwen,Zheng, Hongying,Lin, Lin,Yan, Fei,Chen, Jianping.

[18]Heat shock protein 70 is necessary for Rice stripe virus infection in plants. Jiang, Shanshan,Li, Kunfeng,Lin, Lin,Zheng, Hongying,Chen, Jianping,Jiang, Shanshan,Lu, Yuwen,Li, Kunfeng,Yan, Fei,Chen, Jianping.

[19]Expression of defense genes and activities of antioxidant enzymes in rice resistance to rice stripe virus and small brown planthopper. Hao, Zhongna,Wang, Lianping,He, Yueping,Liang, Jiangen,Tao, Rongxiang.

[20]The Cap Snatching of Segmented Negative Sense RNA Viruses as a Tool to Map the Transcription Start Sites of Heterologous Co-infecting Viruses. Lin, Wenzhong,Qiu, Ping,Jin, Jing,Liu, Shunmin,Ul Islam, Saif,Zhang, Jie,Du, Zhenguo,Wu, Zujian,Yang, Jinguang,Kormelink, Richard,Du, Zhenguo,Wu, Zujian. 2017

作者其他论文 更多>>