Analysis of the Genetic Diversity in Tea Plant Germplasm in Fujian Province Based on Restriction Site-Associated DNA Sequencing
文献类型: 外文期刊
第一作者: Jiang, Lele
作者: Jiang, Lele;Zhou, Chengzhe;Tian, Caiyun;Lai, Zhongxiong;Guo, Yuqiong;Xie, Siyi;Zhou, Chengzhe;Lai, Zhongxiong;Zhu, Chen;Zhu, Chen;You, Xiaomei;Chen, Changsong;Guo, Yuqiong
作者机构:
关键词: Camellia sinensis; genetic diversity; selection pressure; genome-wide association analysis
期刊名称:PLANTS-BASEL ( 影响因子:4.5; 五年影响因子:4.8 )
ISSN: 2223-7747
年卷期: 2024 年 13 卷 1 期
页码:
收录情况: SCI
摘要: Fujian province, an important tea-producing area in China, has abundant tea cultivars. To investigate the genetic relationships of tea plant cultivars in Fujian province and the characteristics of the tea plant varieties, a total of 70 tea cultivars from Fujian and other 12 provinces in China were subjected to restriction site-associated DNA sequencing (RAD-seq). A total of 60,258,975 single nucleotide polymorphism (SNP) sites were obtained. These 70 tea plant cultivars were divided into three groups based on analyzing the phylogenetic tree, principal component, and population structure. Selection pressure analysis indicated that nucleotide diversity was high in Southern China and genetically distinct from cultivars of Fujian tea plant cultivars, according to selection pressure analysis. The selected genes have significant enrichment in pathways associated with metabolism, photosynthesis, and respiration. There were ten characteristic volatiles screened by gas chromatography-mass spectrometry (GC-MS) coupled with multivariate statistical methods, among which the differences in the contents of methyl salicylate, 3-carene, cis-3-hexen-1-ol, (E)-4-hexen-1-ol, and 3-methylbutyraldehyde can be used as reference indicators of the geographical distribution of tea plants. Furthermore, a metabolome genome-wide association study (mGWAS) revealed that 438 candidate genes were related to the aroma metabolic pathway. Further analysis showed that 31 genes of all the selected genes were screened and revealed the reasons for the genetic differences in aroma among tea plant cultivars in Fujian and Southern China. These results reveal the genetic diversity in the Fujian tea plants as well as a theoretical basis for the conservation, development, and utilization of the Fujian highly aromatic tea plant cultivars.
分类号:
- 相关文献
作者其他论文 更多>>
-
Functional Tea Extract Inhibits Cell Growth, Induces Apoptosis, and Causes G0/G1 Arrest in Human Hepatocellular Carcinoma Cell Line Possibly through Reduction in Telomerase Activity
作者:Chen, Yuan;Chen, Changsong;Xiang, Jiaxing;Gao, Ruizhen;Yu, Wenquan;Chen, Yuan;Chen, Changsong;Yu, Wenquan;Chen, Yuan;Xiang, Jiaxing;Gao, Ruizhen;Wang, Guojun
关键词:hepatocellular carcinoma; Hep3B; growth inhibition; apoptosis; cell cycle arrest; telomerase
-
Biosynthetic Pathway and Bioactivity of Vanillin, a Highly Abundant Metabolite Distributed in the Root Cortex of Tea Plants (Camellia sinensis)
作者:Huang, Yanfei;Yang, Yuhua;Xue, Jinghua;Liao, Yinyin;Fu, Xiumin;Zhu, Chen;Zeng, Lanting;Yang, Ziyin;Huang, Yanfei;Yang, Yuhua;Xue, Jinghua;Liao, Yinyin;Fu, Xiumin;Zhu, Chen;Yang, Ziyin;Huang, Yanfei;Fu, Xiumin;Zeng, Lanting;Yang, Ziyin;Huang, Yanfei;Yang, Yuhua;Xue, Jinghua;Liao, Yinyin;Fu, Xiumin;Zhu, Chen;Zeng, Lanting;Yang, Ziyin;Li, Jianlong;Li, Jianlong
关键词:tea; Camellia sinensis; root; vanillin; volatile; biosynthesis; biological function
-
miR828a-CsMYB114 Module Negatively Regulates the Biosynthesis of Theobromine in Camellia sinensis
作者:Jin, Qifang;Wang, Zhong;Chen, Lan;Shao, Chenyu;Xie, Siyi;Shang, Fanghuizi;Wen, Shuai;Wu, Ting;Jin, Huiying;Liu, Guizhi;Hu, Jinyu;Su, Qin;Huang, Mengdi;Zhu, Qian;Zhou, Biao;Zhu, Lihua;Peng, Lvwen;Liu, Zhonghua;Huang, Jianan;Tian, Na;Liu, Shuoqian;Jin, Qifang;Wang, Zhong;Chen, Lan;Shao, Chenyu;Xie, Siyi;Shang, Fanghuizi;Wen, Shuai;Wu, Ting;Jin, Huiying;Liu, Guizhi;Hu, Jinyu;Su, Qin;Huang, Mengdi;Zhu, Qian;Zhou, Biao;Zhu, Lihua;Peng, Lvwen;Liu, Zhonghua;Huang, Jianan;Tian, Na;Liu, Shuoqian;Jin, Qifang;Wang, Zhong;Chen, Lan;Shao, Chenyu;Xie, Siyi;Shang, Fanghuizi;Wen, Shuai;Wu, Ting;Jin, Huiying;Liu, Guizhi;Hu, Jinyu;Su, Qin;Huang, Mengdi;Zhu, Qian;Zhou, Biao;Zhu, Lihua;Peng, Lvwen;Liu, Zhonghua;Huang, Jianan;Tian, Na;Liu, Shuoqian;Sandhu, Devinder;Huang, Feiyi
关键词:"Jianghua Kucha"; theobromine; broadly targeted metabolomic analysis; gene suppression; tea plant
-
Piriformospora indica Enhances Resistance to Fusarium wilt in Strawberry by Increasing the Activity of Superoxide Dismutase, Peroxidase, and Catalase, While Reducing the Content of Malondialdehyde in the Roots
作者:Huang, Yuji;Li, Jinman;Nong, Chaocui;Lin, Tong;Feng, Xu;Lin, Yuling;Lai, Zhongxiong;Miao, Lixiang;Huang, Yuji;Fang, Li;Chen, Yiting
关键词:strawberry; Piriformospora indica; Fusarium wilt; Benihoppe
-
The Circadian Clock Gene PHYTOCLOCK1 Mediates the Diurnal Emission of the Anti-Insect Volatile Benzyl Nitrile from Damaged Tea (Camellia sinensis) Plants
作者:Qian, Jiajia;Zhu, Chen;Yang, Yuhua;Gu, Dachuan;Liao, Yinyin;Zeng, Lanting;Yang, Ziyin;Qian, Jiajia;Zhu, Chen;Yang, Yuhua;Gu, Dachuan;Liao, Yinyin;Zeng, Lanting;Yang, Ziyin;Qian, Jiajia;Zhu, Chen;Yang, Yuhua;Gu, Dachuan;Liao, Yinyin;Zeng, Lanting;Yang, Ziyin;Li, Jianlong;Li, Jianlong;Gu, Dachuan;Zeng, Lanting;Yang, Ziyin
关键词:benzyl nitrile; Camellia sinensis; circadianclock; CsPCL1; slow-release beads; volatile compound
-
Maize ZmSRO1e promotes mesocotyl elongation and deep sowing tolerance by inhibiting the activity of ZmbZIP61
作者:Qin, Lumin;Kong, Fangfang;Wei, Lin;Cui, Minghan;Li, Jianhang;Zhu, Chen;Liu, Yue;Xia, Guangmin;Liu, Shuwei;Qin, Lumin
关键词:deep sowing; HY5; maize; Mesocotyl; SRO
-
Positive contributions of the stem to the formation of white tea quality-related metabolites during withering
作者:Xiang, Lihui;Song, Zhenshuo;Chen, Changsong;Chen, Lin;Zhu, Chen;Qian, Jiajia;Zhou, Xiaochen;Wang, Miao;Zeng, Lanting;Zhu, Chen;Qian, Jiajia;Zhou, Xiaochen;Wang, Miao;Zeng, Lanting;Zhu, Chen;Qian, Jiajia;Zhou, Xiaochen;Wang, Miao;Zeng, Lanting;Zhou, Xiaochen;Zeng, Lanting;Yu, Wenquan;Zeng, Lanting
关键词:White tea; Withering; Quality; Stem; Contribution