Differences in the Sublethal Effects of Sulfoxaflor and Acetamiprid on the Aphis gossypii Glover (Homoptera: Aphididae) Are Related to Its Basic Sensitivity Level
文献类型: 外文期刊
第一作者: Wang, Wei
作者: Wang, Wei;Huang, Qiushi;Liang, Gemei;Wang, Wei;Liu, Xiaoxia;Wang, Wei
作者机构:
关键词: sublethal effects; Aphis gossypii; sulfoxaflor; acetamiprid; life table
期刊名称:INSECTS ( 影响因子:3.139; 五年影响因子:3.285 )
ISSN:
年卷期: 2022 年 13 卷 6 期
页码:
收录情况: SCI
摘要: Simple Summary The sublethal effects of insecticides are not only environmentally risky to arthropods but may also promote resistance evolution. Sublethal effects are influenced by factors such as the type of insecticide, sublethal concentration, and type of pest. This study evaluated the sublethal effects of sulfoxaflor and acetamiprid on two field cotton aphid (Aphis gossypii) populations with different genetic backgrounds. For acetamiprid, a significant negative sublethal effect of an LC25 concentration of acetamiprid on longevity and fecundity was observed in the F-0 generation of Jinghe, and a significant negative sublethal effect occurred in the F-1 and F-2 generations of Yarkant, some biological traits of which were significantly degraded. However, in terms of biological traits, significant stimulative sublethal effects of an LC25 concentration of sulfoxaflor were observed in the F-0 generation of Jinghe and the F-1 generation of Yarkant. These experimental results demonstrate that sulfoxaflor and acetamiprid have different sublethal effects on A. gossypii that vary depending on the generation. Moreover, the sublethal effects of an insecticide may be influenced by the genetic background and resistance levels of A. gossypii. Our findings are useful for assessing the overall effects of sulfoxaflor and acetamiprid on A. gossypii. The cotton aphid, Aphis gossypii, is an important insect pest of many crops around the world, and it has developed resistance to a large number of frequently used insecticides. The sublethal effects of insecticides not only have an environmental risk to arthropods but also have the potential to promote resistance evolution. The sublethal effects (inhibitory or stimulatory) are influenced by many factors, such as the type of insecticide, sublethal concentrations, pest species, and others. In this study, the sublethal effects of sulfoxaflor and acetamiprid on A. gossypii were compared using two field-collected populations. The results show that sulfoxaflor was more toxic than acetamiprid against A. gossypii in both populations, the LC50 concentrations of acetamiprid and sulfoxaflor were 6.35 and 3.26 times higher, respectively, for the Jinghe population than for Yarkant. The LC25 concentration of acetamiprid significantly reduced adult longevity and fecundity in exposed adults (F-0) of the Jinghe population, but it had no significant effects on these factors in Yarkant. Similar inhibitory effects were found in the F-1 and F-2 generations, but the biological traits in the Yarkant population were significantly reduced when the parents (F-0) were exposed to LC25 of acetamiprid, whereas the changes in the Jinghe population were not significant. However, sublethal sulfoxaflor showed a stimulatory effect on A. gossypii in the F-0 and F-1 generation; the adult fecundity and longevity of the F-0 generation were significantly higher in Jinghe, while the biological traits of the F-1 generation were obviously higher in Yarkant. In the F-2 generation, the r and lambda were significantly higher in Jinghe; meanwhile, these biological traits were reduced in Yarkant. These results indicate that sulfoxaflor and acetamiprid had different sublethal effects on A. gossypii that varied by generation. In addition, we speculate that the genetic background and the resistance levels of A. gossypii may also influence the sublethal effects. Our findings are useful for assessing the overall effects of sulfoxaflor and acetamiprid on A. gossypii.
分类号:
- 相关文献
作者其他论文 更多>>
-
Whole genome and transcriptome analyses in dairy goats identify genetic markers associated with high milk yield
作者:Zhao, Jianqing;Shi, Chenbo;Kamalibieke, Jiayidaer;Mu, Yuanpan;Zhu, Lu;Wang, Wei;Luo, Jun;Gong, Ping;Lv, Xuefeng
关键词:Dairy goat; Selective signal analysis; Genome-wide association study; Transcriptomic analyses; Milk yield
-
Detection and characterization of bovine hepacivirus in cattle and sheep from Hulunbuir, northeastern China
作者:Ma, Jingge;Liu, Ziyan;Liu, Ning;Wang, Zedong;Ma, Jingge;Wei, Feng;Wei, Zhiwei;Zheng, Xiangyu;Li, Liang;Liu, Ziyan;Wang, Wei
关键词:bovine hepacivirus (BovHepV); sheep; cattle; phylogenetic evolution; China
-
Effects of maternal Escherichia coli lipopolysaccharide exposure on offspring: insights from lncRNA analysis in laying hens
作者:Yan, Zhixun;Liu, Huagui;Chu, Qin;Liu, Lei;Liu, Lei;Yu, Ying;Wang, Wei;Adetula, Adeyinka Abiola
关键词:LPS maternal stimulation; Chicken; Offspring; Egg-laying rate; lncRNA
-
Comparative transcriptome profiling reveals the key genes and molecular mechanisms involved in rice under blast infection
作者:Li, Gang;Wang, Jian;Cheng, Baoshan;Wang, Di;Gao, Hao;Xu, Weijun;Wang, Wei;Gao, Qingsong;Zhang, Wenxia;Ji, Jianhui;Li, Bianhao;Zhang, Guoliang;Qi, Zhongqiang;Liu, Yongfeng
关键词:Rice; Blast; Transcriptome; Disease resistance; Hormones; Biochemical indicators
-
Ac/Ds-like Transposon Elements Inserted in ZmABCG2a Cause Male Sterility in Maize
作者:Wang, Le;Arshad, Saeed;Li, Taotao;Wei, Mengli;Jia, Haiyan;Ma, Zhengqiang;Yan, Yuanxin;Ren, Hong;Wang, Wei;Yan, Yuanxin
关键词:maize (
Zea mays ); seed production;ZmABCG2a ; mutantms*-N125 ; mutantms*-P884 -
Visible light photocatalytic degradation of pesticides and antibiotics by H3PO4-activated biochar combined with g-C3N4: Effects, mechanism, degradation pathway, and toxicity assessment
作者:Shi, Haojie;Wang, Wei;Mao, Liangang;Zhang, Lan;Zhu, Lizhen;Wu, Chi;Liu, Xingang
关键词:Biochar; Pesticide; Antibiotic; Photodegradation
-
Legume intercropping improves soil organic carbon stability in drylands: A 7-year experimental validation
作者:Wang, Wei;Li, Meng-Ying;Wang, Yang;Li, Jian-Ming;Zhang, Wei;Wen, Qin-Hui;Huang, Shuang-Jin;Wang, Jing;Ullah, Fazal;Xiong, You-Cai;Chen, Guang-Rong;Zhu, Shuang-Guo
关键词:Climate-smart agriculture; Legume intercropping; SOC stability; Microbial necromass; Enzyme stoichiometry