Transcriptomic analyses of space-induced rice mutants with enhanced susceptibility to rice blast

文献类型: 外文期刊

第一作者: Cheng, Zhenlong

作者: Cheng, Zhenlong;Zhang, Meng;Sun, Yeqing;Cheng, Zhenlong;Liu, Ming;Hang, Xiaoming;Sun, Yeqing;Lei, Cailin

作者机构:

关键词: Space environment;Transcriptome;Rice blast;Mutant rice;Gene expression

期刊名称:ADVANCES IN SPACE RESEARCH ( 影响因子:2.152; 五年影响因子:1.978 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Mutagenic factors of the space environment influence organisms in different aspects. To elucidate the transcriptomic effects of space flight, a space flight-induced rice mutant, 972-4, and its on-ground control, 972ck, were inoculated with rice blast pathogens. Compared to the control, the mutant exhibited reduced resistance to the rice blast pathogen CH45. Microarray technique was employed to analyze affected genes and revealed that 481 genes were expressed at higher levels in the mutant strain and 188 genes were expressed at higher levels in the control strain under normal growth conditions, indicating that transcriptomic changes of rice seeds are induced by the space environment. After inoculation with the rice blast pathogen CH45, however, 2680 genes were differentially expressed in 972ck and 1863 genes were differentially expressed in 972-4. In addition, disease evaluation indicated that the control strain 972ck is more resistant to the rice blast pathogen CH45 than mutant strain 972-4. In addition, genes in both strains that were co-regulated after blast inoculation account for only 36.8% and 53.3% of the genes expressed in 972ck and 972-4, respectively. A large percentage of blast-regulated genes were not consistently expressed in 972-4 and 972ck, and the mutant and control strains exhibit different gene expression patterns after blast inoculation. Interestingly, 84 genes constitutively expressed higher in 972ck were up-regulated by blast inoculation, and 105 genes that were expressed at constitutively higher levels in 972-4 were down-regulated by blast inoculation. Of the differentially expressed, 7 encoded genes associated with pathogen resistance. Taken together, our results suggest that gene expression patterns are different between a space flight-induced rice mutant and its on-ground control, and the differential expression of resistance genes may be a potential mechanism that modulates the resistance of 972-4 to rice blast. Our results also suggest that the rice plants are suitable plant models for further research of the effects of the space environment on gene expression and function.

分类号: V1

  • 相关文献

[1]De novo Transcriptome Assembly of Chinese Kale and Global Expression Analysis of Genes Involved in Glucosinolate Metabolism in Multiple Tissue. Wu, Shuanghua,Lei, Jianjun,Chen, Guoju,Cao, Bihao,Chen, Changming,Chen, Hancai. 2017

[2]Transcriptome of High-Sucrose Sugarcane Variety GT35. Gao, Yi-Jing,Gui, Yi-Yun,Chen, Zhong-Liang,Qin, Cui-Xian,Wang, Miao,Li, Yang-Rui,Liao, Qing,Li, Yang-Rui,Yang, Li-Tao. 2016

[3]DE NOVO TRANSCRIPTOME ANALYSIS OF MULBERRY (MORUS L.) UNDER DROUGHT STRESS USING RNA-SEQ TECHNOLOGY. Wang, Heng,Tong, Wei,Feng, Li,Jiao, Qian,Long, Li,Fang, Rongjun,Zhao, Weiguo,Long, Li,Zhao, Weiguo,Fang, Rongjun,Zhao, Weiguo.

[4]Global analysis of gene expression in flower buds of Ms-cd1 Brassica oleracea conferring male sterility by using an Arabidopsis microarray. Bonnema, Guusje,Kang, Jungen,Zhang, Guoyu,Fang, Zhiyuan,Wang, Xiaowu.

[5]Identification of novel microRNAs in Hevea brasiliensis and computational prediction of their targets. Gebelin, Virginie,Argout, Xavier,Engchuan, Worrawat,Pitollat, Bertrand,Duan, Cuifang,Montoro, Pascal,Leclercq, Julie,Engchuan, Worrawat,Duan, Cuifang. 2012

[6]Transcriptome analysis and discovery of genes involved in immune pathways in large yellow croaker (Larimichthys crocea) under high stocking density stress. Sun, Peng,Bao, Peibo,Tang, Baojun,Bao, Peibo.

[7]RNA-seq analysis provides insight into reprogramming of culm development in Zizania latifolia induced by Ustilago esculenta. Wang, Zhi-Dan,Wang, Zheng-Hong,Zhang, Xiao-Huan,Xue, Hui-Min,Wang, Li-Xia,Zhan, Qi,Xu, Ying-Ping,Guo, De-Ping,Yan, Ning,Zhang, Jing-Ze. 2017

[8]Transcription Profiling Analysis of Mango-Fusarium Mangiferae Interaction. Liu, Feng,Wu, Jing-bo,Zhan, Ru-lin,Ou, Xiong-chang. 2016

[9]De novo sequencing and comprehensive analysis of the mutant transcriptome from purple sweet potato (Ipomoea batatas L.). Ma, Peiyong,Bian, Xiaofeng,Jia, Zhaodong,Guo, Xiaoding,Xie, Yizhi.

[10]Comparative Transcriptome Analysis Reveals Differential Transcription in Heat-susceptible and Heat-tolerant Pepper (Capsicum annum L.) Cultivars under Heat Stress. Li, Tao,Xu, Xiaowan,Li, Ying,Wang, Hengming,Li, Zhiliang,Li, Zhenxing,Li, Tao,Xu, Xiaowan.

[11]Characterizing developmental and inducible differentiation between juvenile and adult plants of Aechmea fasciata treated with ethylene by transcriptomic analysis. Cong, Hanqing,Li, Zhiying,Xu, Li,Cong, Hanqing,Li, Zhiying,Xu, Li,Cong, Hanqing.

[12]De novo assembly and characterization of Muscovy duck liver transcriptome and analysis of differentially regulated genes in response to heat stress. Zeng, Tao,Zhang, Liping,Li, Jinjun,Wang, Deqian,Tian, Yong,Lu, Lizhi,Zhang, Liping.

[13]Transcriptome sequencing and comparative analysis reveal long-term flowing mechanisms in Hevea brasiliensis latex. Wei, Fang,Luo, Shigiao,Zheng, Qiankun,Qiu, Jian,Yang, Wenfeng,Wu, Ming,Xiao, Xianzhou.

[14]Feeding brittle culm1 whole crop rice replacing wheat by-products to growing-finishing pigs. Wang, H. F.,Liu, J. X.,Qian, Q.,Wu, Y. M.. 2006

[15]A collection of 10,096 indica rice full-length cDNAs reveals highly expressed sequence divergence between Oryza sativa indica and japonica subspecies. Liu, Xiaohui,Lu, Tingting,Yu, Shuliang,Li, Ying,Huang, Yuchen,Huang, Tao,Zhang, Lei,Zhu, Jingjie,Zhao, Qiang,Fan, Danlin,Mu, Jie,Shangguan, Yingying,Feng, Qi,Guan, Jianping,Ying, Kai,Zhang, Yu,Lin, Zhixin,Sun, Zongxiu,Qian, Qian,Lu, Yuping,Han, Bin.

[16]Pyramiding of Pi46 and Pita to improve blast resistance and to evaluate the resistance effect of the two R genes. Xiao Wu-ming,Luo Li-xin,Wang Hui,Guo Tao,Liu Yong-zhu,Zhou Ji-yong,Chen Zhi-qiang,Zhu Xiao-yuan,Yang Qi-yun. 2016

[17]Resistance spectrum assay and fine mapping of the blast resistance gene from a rice experimental line, IRBLta2-Re. Chen, Shen,Wang, Xiaojing,Yang, Chengwei,Chen, Shen,Su, Jing,Han, Jingluan,Wang, Wenjuan,Wang, Congying,Yang, Jianyuan,Zeng, Liexian,Zhu, Xiaoyuan,Chen, Shen,Su, Jing,Han, Jingluan,Wang, Wenjuan,Wang, Congying,Yang, Jianyuan,Zeng, Liexian,Zhu, Xiaoyuan. 2014

[18]4-Coumarate-CoA Ligase-Like Gene OsAAE3 Negatively Mediates the Rice Blast Resistance, Floret Development and Lignin Biosynthesis. Liu, Hao,Gu, Fengwei,Dong, Shuangyu,Liu, Wei,Huang, Ming,Xiao, Wuming,Yang, Guili,Liu, Yongzhu,Guo, Tao,Wang, Hui,Wang, Jiafeng,Chen, Zhiqiang,Guo, Zhenhua,Ke, Shanwen,Sun, Dayuan. 2017

[19]Rapid identification of rice blast resistance gene by specific length amplified fragment sequencing. Chen, Shen,Wang, Wen-juan,Su, Jing,Wang, Cong-ying,Feng, Ai-qing,Yang, Jian-yuan,Zeng, Lie-xian,Zhu, Xiao-yuan. 2016

[20]Identification of the novel recessive gene pi55(t) conferring resistance to Magnaporthe oryzae. He XiuYing,Cheng YongSheng,Chen ZhaoMing,Liao YaoPing,He XiuYing,Wang Li,Wang Ling,Lin Fei,Pan QingHua,Liu XinQiong. 2012

作者其他论文 更多>>