Polysaccharides from Astragalus membranaceus Bunge alleviate LPS-induced neuroinflammation in mice by modulating microbe-metabolite-brain axis and MAPK/NF-κB signaling pathway

文献类型: 外文期刊

第一作者: Liu, Dongyuan

作者: Liu, Dongyuan;Hou, Ziming;Wang, Hao;Zhu, Yuying;Li, Qiangqiang

作者机构:

关键词: Astragalus membranaceus Bunge; polysaccharides; Anti-neuroinflammation; Microbe-metabolite-brain axis

期刊名称:INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES ( 影响因子:8.5; 五年影响因子:8.7 )

ISSN: 0141-8130

年卷期: 2025 年 304 卷

页码:

收录情况: SCI

摘要: Neuroinflammation can lead to various neurodegenerative disorders, resulting in irreversible neurological dysfunction. Astragalus membranaceus Bunge polysaccharides (APS) present great potential in alleviating neuroinflammation; however, the specific mechanism underlying its neuroprotective effect remains unclear, leading to uncertain prospects for pharmaceutical applications. This study aims to elucidate the mechanism underlying APS-mediated inhibition of neuroinflammation in mice induced by lipopolysaccharide (LPS) through regulation of metabolic function, intestinal flora composition, and cell signaling transduction. Results indicated that APS pretreatment effectively mitigated LPS-induced brain damage. Metabolomics analysis revealed that APS pretreatment also regulated the metabolic disturbances induced by LPS through targeting five specific metabolic pathways. This regulation was supported by notable alterations in nine metabolite markers. Furthermore, APS pretreatment significantly modulated the abundance of four taxa of gut microbes (i.e., Romboutsia, Rikenella, Dubosiella, Odoribacter) closely associated with regulations in eleven metabolic and signaling pathways. Additionally, transcriptome analysis and Western blotting unveiled that APS pretreatment exerted a neuroprotective effect by modulating the MAPK/NF-kappa B signaling pathway. Our findings provide insights into the potential mechanisms underlying the neuroprotective effects of APS while establishing a solid foundation for future utilization of APS.

分类号:

  • 相关文献
作者其他论文 更多>>