Genome-Wide Association Study Reveals Key Genetic Loci Controlling Oil Content in Soybean Seeds

文献类型: 外文期刊

第一作者: Wang, Xueyang

作者: Wang, Xueyang;Zhang, Min;Liu, Xiulin;Zhang, Chunlei;Zhang, Fengyi;Zhao, Kezhen;Yuan, Rongqiang;Lamlom, Sobhi F.;Ren, Honglei;Zhang, Min;Li, Fuxin;Qiu, Hongmei;Lamlom, Sobhi F.;Zhang, Bixian

作者机构:

关键词: soybean; oil content; genome-wide association study (GWAS); single-nucleotide polymorphism (SNP); Northern China

期刊名称:AGRONOMY-BASEL ( 影响因子:3.4; 五年影响因子:3.8 )

ISSN:

年卷期: 2025 年 15 卷 8 期

页码:

收录情况: SCI

摘要: Seed oil represents a key trait in soybeans, which holds substantial economic significance, contributing to roughly 60% of global oilseed production. This research employed genome-wide association mapping to identify genetic loci associated with oil content in soybean seeds. A panel comprising 341 soybean accessions, primarily sourced from Northeast China, was assessed for seed oil content at Heilongjiang Province in three replications over two growing seasons (2021 and 2023) and underwent genotyping via whole-genome resequencing, resulting in 1,048,576 high-quality SNP markers. Phenotypic analysis indicated notable variation in oil content, ranging from 11.00% to 21.77%, with an average increase of 1.73% to 2.28% across all growing regions between 2021 and 2023. A genome-wide association study (GWAS) analysis revealed 119 significant single-nucleotide polymorphism (SNP) loci associated with oil content, with a prominent cluster of 77 SNPs located on chromosome 8. Candidate gene analysis identified four key genes potentially implicated in oil content regulation, selected based on proximity to significant SNPs (<= 10 kb) and functional annotation related to lipid metabolism and signal transduction. Notably, Glyma.08G123500, encoding a receptor-like kinase involved in signal transduction, contained multiple significant SNPs with PROVEAN scores ranging from deleterious (-1.633) to neutral (0.933), indicating complex functional impacts on protein function. Additional candidate genes include Glyma.08G110000 (hydroxycinnamoyl-CoA transferase), Glyma.08G117400 (PPR repeat protein), and Glyma.08G117600 (WD40 repeat protein), each showing distinct expression patterns and functional roles. Some SNP clusters were associated with increased oil content, while others correlated with decreased oil content, indicating complex genetic regulation of this trait. The findings provide molecular markers with potential for marker-assisted selection (MAS) in breeding programs aimed at increasing soybean oil content and enhancing our understanding of the genetic architecture governing this critical agricultural trait.

分类号:

  • 相关文献
作者其他论文 更多>>