Asymmetric evolution of ISG15 homologs and the immune adaptation to LBUSV infection in spotted seabass (Lateolabrax maculatus)

文献类型: 外文期刊

第一作者: Zhang, Bo

作者: Zhang, Bo;Yan, Lulu;Lin, Changhong;Liu, Yong;Zhao, Chao;Wang, Pengfei;Qiu, Lihua;Zhang, Bo;Yan, Lulu;Zhao, Chao;Wang, Pengfei;Qiu, Lihua;Lin, Changhong;Zhang, Yanhong;Qiu, Lihua

作者机构:

关键词: Spotted seabass; ISG15; Antiviral immune; LBUSV; Asymmetric evolution

期刊名称:FISH & SHELLFISH IMMUNOLOGY ( 影响因子:4.7; 五年影响因子:4.7 )

ISSN: 1050-4648

年卷期: 2024 年 148 卷

页码:

收录情况: SCI

摘要: The battle between host and viral is ubiquitous across all ecosystems. Despite this, research is scarce on the antiviral characteristics of fish, particularly in those that primarily rely on innate immune responses. This study, comprehensively explored the genetic and antiviral features of ISG15 in spotted seabass, focusing on its response to largemouth bass ulcerative syndrome virus (LBUSV). Through whole-genome BLAST and PCR cloning, two ISG15 homologs, namely LmISG15a and LmISG15b, were identified in spotted seabass, both encoding highly conserved proteins. However, a distinctive contrast emerged in their expression patterns, with LmISG15a exhibiting high expression in immune organs while LmISG15b remained largely silent across various organs. Regulatory elements analysis indicated an asymmetric evolution of the two ISG15s, with the minimal expression of LmISG15b may attribute to the loss of a necessary ISRE and an additional instability "ATTTA" motif. Association analysis demonstrated a significant correlation between LmISG15a expression and LBUSV infection. Subsequent antiviral activity detection revealed that LmISG15a interacted with LBUSV, inhibiting its replication by activating ISGylation and downstream pro-inflammatory mediators. In summary, this study unveils a distinct evolutionary strategy of fish antiviral gene ISG15 and delineates its kinetic characteristics in response to LBUSV infection.

分类号:

  • 相关文献
作者其他论文 更多>>