Expression Analysis of Citrate Metabolism-Related Genes Reveals New Insights into High Citrate Accumulation in a Bingtang Orange Bud Mutant (Citrus sinensis cv. Jinyan)

文献类型: 外文期刊

第一作者: Guo, Lingxia

作者: Guo, Lingxia;Han, Jian;Liao, Wei;Zhou, Tie;Wang, Congtian;Xu, Yuanyuan;Chen, Peng;Guo, Lingxia;Han, Jian;Liao, Wei;Zhou, Tie;Wang, Congtian;Xu, Yuanyuan;Chen, Peng;Hussain, Syed Bilal;Tang, Lei;Liu, Fei

作者机构:

关键词: Citrus sinensis; bud mutant; fruit quality; citric acid; metabolism

期刊名称:HORTICULTURAE ( 影响因子:3.0; 五年影响因子:3.2 )

ISSN:

年卷期: 2025 年 11 卷 6 期

页码:

收录情况: SCI

摘要: Understanding the molecular regulation of citric acid accumulation in citrus fruits is crucial, as acidity directly influences fruit flavor, consumer preference, and commercial value. Citric acid is the predominant organic acid in citrus, and its levels are shaped by several factors, including genetic and developmental factors. 'Jinyan' Bingtang orange (Citrus sinensis cv. Jinyan) is a novel mutant derived from 'Jinhong' Bingtang orange (C. sinensis cv. Jinhong) that has a noticeably sour taste. However, the molecular basis of the increased citrate content in 'Jinyan' fruits remains unclear. This study compared the organic acid profiles and expression of citric acid metabolism-related genes between 'Jinyan' and 'Jinhong' fruit juice sacs throughout fruit development. The trend of citric acid content in both cultivars was similar; however, 'Jinyan' consistently presented significantly higher levels than 'Jinhong' did from 95 to 215 days after flowering (DAF). After 155 DAF, the transcript levels of citrate biosynthesis-related genes (PEPC1, PEPC2, PEPC3, CS1, and CS2) and citrate transport-related genes (V1-E1, V1-E2, V0-a2, V0-d, VHP1, VHP2, and CsPH8) were significantly greater in 'Jinyan' than in 'Jinhong'. In contrast, citrate degradation-related genes (NAD-IDH2 and NAD-IDH3) were expressed at lower levels than in 'Jinhong'. Notably, the expression patterns of V1-E2 and CsPH8 closely matched the changes in citrate content in both cultivars. These results indicate that, compared with 'Jinhong', high citric acid accumulation in the juice sacs of 'Jinyan' fruit is likely due to increased citrate synthesis (via upregulated PEPCs and CSs) and increased vacuolar citrate sequestration (via upregulated proton pumps and transporters), coupled with reduced citrate degradation (lower NAD-IDH2/3).

分类号:

  • 相关文献
作者其他论文 更多>>