Weed25: A deep learning dataset for weed identification

文献类型: 外文期刊

第一作者: Wang, Pei

作者: Wang, Pei;Tang, Yin;Luo, Fan;Wang, Lihong;Li, Chengsong;Niu, Qi;Li, Hui;Wang, Pei;Wang, Pei;Li, Hui;Li, Hui

作者机构:

关键词: Weed25; weed dataset; deep learning; weed identification; weed species

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:6.627; 五年影响因子:7.255 )

ISSN: 1664-462X

年卷期: 2022 年 13 卷

页码:

收录情况: SCI

摘要: Weed suppression is an important factor affecting crop yields. Precise identification of weed species will contribute to automatic weeding by applying proper herbicides, hoeing position determination, and hoeing depth to specific plants as well as reducing crop injury. However, the lack of datasets of weeds in the field has limited the application of deep learning techniques in weed management. In this paper, it presented a dataset of weeds in fields, Weed25, which contained 14,035 images of 25 different weed species. Both monocot and dicot weed image resources were included in this dataset. Meanwhile, weed images at different growth stages were also recorded. Several common deep learning detection models-YOLOv3, YOLOv5, and Faster R-CNN-were applied for weed identification model training using this dataset. The results showed that the average accuracy of detection under the same training parameters were 91.8%, 92.4%, and 92.15% respectively. It presented that Weed25 could be a potential effective training resource for further development of in-field real-time weed identification models. The dataset is available at https://pan.baidu.com/s/1rnUoDm7IxxmX1n1LmtXNXw; the password is rn5h.

分类号:

  • 相关文献
作者其他论文 更多>>