Soil chemistry, metabarcoding, and metabolome analyses reveal that a sugarcane-Dictyophora indusiata intercropping system can enhance soil health by reducing soil nitrogen loss

文献类型: 外文期刊

第一作者: Duan, Mingzheng

作者: Duan, Mingzheng;Li, Yijie;Huang, Hairong;Qin, Jie;Li, Xiang;Li, Changning;Wang, Zeping;Duan, Mingzheng;Wang, Lingqiang;Li, Qing;Zhu, Guanghu;Liu, Qi-Huai;Wu, Xiaojian;Long, Shengfeng;He, Tieguang;Feng, Bin;Qin, Sunqian

作者机构:

关键词: intercropping system; NPK; soil ions; soil enzyme activity; metabarcoding; soil metabolome

期刊名称:FRONTIERS IN MICROBIOLOGY ( 影响因子:5.2; 五年影响因子:6.2 )

ISSN:

年卷期: 2023 年 14 卷

页码:

收录情况: SCI

摘要: IntroductionGreater amounts of fertilizer are applied every year to meet the growing demand for food. Sugarcane is one of the important food sources for human beings. MethodsHere, we evaluated the effects of a sugarcane-Dictyophora indusiata (DI) intercropping system on soil health by conducting an experiment with three different treatments: (1) bagasse application (BAS process), (2) bagasse + DI (DIS process), and (3) the control (CK). We then analyzed soil chemistry, the diversity of soil bacteria and fungi, and the composition of metabolites to clarify the mechanism underlying the effects of this intercropping system on soil properties. Results and discussionSoil chemistry analyses revealed that the content of several soil nutrients such as nitrogen (N) and phosphorus (P) was higher in the BAS process than in the CK. In the DIS process, a large amount of soil P was consumed by DI. At the same time, the urease activity was inhibited, thus slowing down the loss of soil in the DI process, while the activity of other enzymes such as beta-glucosidase and laccase was increased. It was also noticed that the content of lanthanum and calcium was higher in the BAS process than in the other treatments, and DI did not significantly alter the concentrations of these soil metal ions. Bacterial diversity was higher in the BAS process than in the other treatments, and fungal diversity was lower in the DIS process than in the other treatments. The soil metabolome analysis revealed that the abundance of carbohydrate metabolites was significantly lower in the BAS process than in the CK and the DIS process. The abundance of D(+)-talose was correlated with the content of soil nutrients. Path analysis revealed that the content of soil nutrients in the DIS process was mainly affected by fungi, bacteria, the soil metabolome, and soil enzyme activity. Our findings indicate that the sugarcane-DIS intercropping system can enhance soil health.

分类号:

  • 相关文献
作者其他论文 更多>>