Response of compost maturity and microbial community composition to pentachlorophenol (PCP)-contaminated soil during composting

文献类型: 外文期刊

第一作者: Zeng, Guangming

作者: Zeng, Guangming;Yu, Zhen;Chen, Yaoning;Zhang, Jiachao;Li, Hui;Zhao, Mingjie;Zeng, Guangming;Yu, Zhen;Chen, Yaoning;Zhang, Jiachao;Li, Hui;Zhao, Mingjie;Yu, Man

作者机构:

关键词: Compost maturity;Composting;DGGE;Microbial community composition;Pentachlorophenol

期刊名称:BIORESOURCE TECHNOLOGY ( 影响因子:9.642; 五年影响因子:9.237 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Two composting piles were prepared by adding to a mixture of rice straw, vegetables and bran: (i) raw soil free from pentachlorophenol (PCP) contamination (pile A) and (ii) PCP-contaminated soil (pile B). It was shown by the results that compost maturity characterized by water soluble carbon (WSC), TOC/TN ratio, germination index (GI) and dehydrogenase activity (DA) was significantly affected by PCP exposure, which resulted in an inferior degree of maturity for pile B. DGGE analysis revealed an inhibited effect of PCP on compost microbial abundance. The bacteria community shifts were mainly consistent with composting factors such as temperature, pH, moisture content and substrates. By contrast, the fungal communities were more sensitive to PCP contamination due to the significant correlation between fungal community shifts and PCP removal. Therefore, the different microbial community compositions for properly evaluating the degree of maturity and PCP contamination were suggested.

分类号: Q

  • 相关文献

[1]Decline in extractable kitasamycin during the composting of kitasamycin manufacturing waste with dairy manure and sawdust. Ding, Nengfei,Liu, Chen,Fu, Qinglin,Guo, Bin,Li, Hua,Li, Ningyu,Lin, Yicheng,Li, Weidong. 2014

[2]Molecular phylogenetic diversity of Bacillus community and its temporal-spatial distribution during the swine manure of composting. Wu, Jian,Yi, Jing,Deng, Chang-Yan,Zheng, Rong,Chao, Zhe,Yi, Jing,Deng, Chang-Yan,Zheng, Rong,Chao, Zhe,Wu, Hua-Yu.

[3]Maize biochar addition rate influences soil enzyme activity and microbial community composition in a fluvo-aquic soil. Wang, Xiubin,Song, Dali,Liang, Guoqing,Zhang, Qian,Ai, Chao,Zhou, Wei,Song, Dali.

[4]The alleviation of acid soil stress in rice by inorganic or organic ameliorants is associated with changes in soil enzyme activity and microbial community composition. Liang, Guoqing,Sun, Jingwen,He, Ping,Zhou, Wei,Wang, Xiubin,He, Ping,Tang, Shuanhu,Yang, Shaohai.

[5]Responses of Soil Micro-Food Web to Land Use Change from Upland to Paddy Fields with Different Years of Rice Cultivation. Lu Ying,Liang Wenju,Bai Wei,Cai Qian,Wang Xuefeng,Lu Ying. 2017

[6]Determination of Water- and Methanol-Extractable Pentachlorophenol in Soils Using Vortex-assisted Liquid-Liquid Extraction and Gas Chromatography. Yu Xiong-Sheng,Liu Yong,Lou Jun,Feng Xiao-Li,Wang Hai-Zhen,Xu Jian-Ming,Liu Yong. 2015

[7]Interactively interfacial reaction of iron-reducing bacterium and goethite for reductive dechlorination of chlorinated organic compounds. Li XiaoMin,Li FangBai,Zhou ShunGui,Liu TongXu,Li XiaoMin,Li YongTao,Feng ChunHua,Li XiaoMin. 2009

[8]A novel electrochemical sensor for chlorophenols based on the enhancement effect of Al-doped mesoporous cellular foam. Jiang, Cuiwen,Yan, Feiyan,Xie, Liping,Li, Tao,Wang, Yanli,Wei, Liang. 2018

[9]Determination of pentachlorophenol and sodium pentachlorophenolate in fishery products by acetic anhydride derivatization/GC/mu-ECD. Shi, Yong-fu,Huang, Dong-mei,Huang, Xuan-yun,Yu, Hui-juan,Xu, Jie,Wang, Yuan,Cai, You-qiong. 2012

[10]Effects of the Fe-II/Cu-II Interaction on Copper Aging Enhancement and Pentachlorophenol Reductive Transformation in Paddy Soil. Wang, Yong-kui,Tao, Liang,Chen, Man-jia,Li, Fang-bai,Wang, Yong-kui,Chen, Man-jia,Wang, Yong-kui,Chen, Man-jia. 2012

[11]Effect of pH on pentachlorophenol degradation in irradiated iron/oxalate systems. Lan, Qing,Li, Fang-bai,Liu, Cheng-shuai,Lan, Qing,Liu, Hong,Zeng, Feng.

[12]Heterogeneous photodegradation of pentachlorophenol and iron cycling with goethite, hematite and oxalate under UVA illumination. Lan, Qing,Li, Fang-bai,Sun, Cui-xiang,Liu, Cheng-shuai,Lan, Qing,Li, Xiang-zhong,Lan, Qing.

[13]Degradation of Pentachlorophenol by Potato Polyphenol Oxidase. Hou, Mei-Fang,Zhang, Wei-De,Hou, Mei-Fang,Tang, Xiao-Yan,Liao, Lin,Wan, Hong-Fu,Tang, Xiao-Yan.

[14]Simultaneous removal of nitrate and pentachlorophenol from simulated groundwater using a biodenitrification reactor packed with corncob. Wang, Xuming,Xing, Lijun,Qiu, Tianlei,Han, Meilin.

[15]The key microorganisms for anaerobic degradation of pentachlorophenol in paddy soil as revealed by stable isotope probing. Tong, Hui,Li, Fangbai,Chen, Manjia,Hu, Min,Tong, Hui,Luo, Chunling,Tong, Hui,Liu, Chengshuai.

[16]Dynamics of the microbial community and Fe(III)-reducing and dechlorinating microorganisms in response to pentachlorophenol transformation in paddy soil. Chen, Manjia,Liu, Chengshuai,Chen, Pengcheng,Tong, Hui,Li, Fangbai,Qiao, Jiangtao,Liu, Chengshuai,Tong, Hui,Lan, Qing.

[17]Study on Packing Materials for High-temperature Compost of Livestock Manure. Li Ji-jin,Sun Qin-ping,Zou Guo-yuan,Xu Jun-xiang,Gao Li-juan,Luo Yi-ming. 2013

[18]Evaluation of humic substances during co-composting of sewage sludge and corn stalk under different aeration rates. Li, Shuyan,Li, Danyang,Li, Guoxue,Zhang, Bangxi,Li, Jijin,Zhang, Bangxi.

[19]Gentamicin degradation and changes in fungal diversity and physicochemical properties during composting of gentamicin production residue. Liu, Yuanwang,Feng, Yao,Cheng, Dengmiao,Hu, Haiyan,Li, Zhaojun,Xue, Jianming,Xue, Jianming,Wakelin, Steve A..

[20]Rapid estimation of nutrients in chicken manure during plant-field composting using physicochemical properties. Huang, Guangqun,Han, Lujia,Wang, Xiaoyan.

作者其他论文 更多>>