Changes in Yield and Yield Components of Single-Cross Maize Hybrids Released in China between 1964 and 2001

文献类型: 外文期刊

第一作者: Bubeck, David

作者: Bubeck, David;Bhardwaj, Hans;Jones, Elizabeth;Wright, Kevin;Smith, Stephen;Wang, Tianyu;Ma, Xinglin;Li, Yu;Liu, Zhizhai;Tan, Xianjie;Shi, Yunsu;Song, Yanchun;Bai, Dapeng;Liu, Cheng;Carlone, Mario

作者机构:

关键词: genetic gain;crop yield;plant morphology

期刊名称:CROP SCIENCE ( 影响因子:2.319; 五年影响因子:2.631 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The objectives of this study were to (i) measure genetic gain using a set of maize (Zea mays L.) single-cross hybrids that were widely used in Chinese maize production from 1964 to 2001, (ii) determine if there were changes in morphological characteristics, and (iii) examine the germplasm backgrounds of these hybrids. Yield trials were conducted for 3 yr, using a split-plot design. Each hybrid was planted at three different densities in four locations, two locations each representing summer and spring corn areas. Mean rates of genetic gain were 52 kg ha(-1) yr(-1) when measured at the spring locations, 69 kg ha(-1) yr(-1) when measured at the summer locations, and 60 kg ha(-1) yr(-1) when measured across all locations. There was no significant effect of planting density on genetic gain. Genetic gain has been largely contributed by increased yield per plant and this strategy was reflected in changes in ear and plant morphology. Analyses of pedigree backgrounds showed continuing dependence on U. S. germplasm backgrounds, notably C103, Oh43, Mo17, and Iowa Stiff Stalk Synthetic (BSSS).

分类号: S5

  • 相关文献

[1]Genetic diversity among a founder parent and widely grown wheat cultivars derived from the same origin based on morphological traits and microsatellite markers. Li, X. J.,Xu, X.,Yang, X. M.,Li, X. Q.,Liu, W. H.,Gao, A. N.,Li, L. H.,Li, X. J.,Xu, X..

[2]Enhancing genetic gain in the era of molecular breeding. Xu, Yunbi,Zou, Cheng,Xie, Chuanxiao,Xu, Yunbi,Zhang, Xuecai,Li, Ping,Lu, Yanli,Prasanna, Boddupalli M.,Olsen, Michael S..

[3]Genetic gains in grain yield, net photosynthesis and stomatal conductance achieved in Henan Province of China between 1981 and 2008. Xia, X. C.,He, Z. H.,Zheng, T. C.,Yin, G. H.,Wang, L. N.,Han, Y. L.,Huang, F.,Tang, J. W.,Zhang, X. K.,Chen, L.,He, Z. H..

[4]Morphological and yield responses of winter wheat (Triticum aestivum L.) to raised bed planting in Northern China. Wang, Fahong,Kong, Ling'an,Li, Shengdong,Si, Jisheng,Feng, Bo,Zhang, Bin,Wang, Fahong,Sayre, Ken. 2011

[5]Seed micromorphology and germination characteristics of wild and cultivated pepper strains. Zhang Zhuqing,Dai Xiongze,Zou Xuexiao,Ou Lijun,Ou Lijun.

[6]Differential responses of double petal and multi petal jasmine to shading: II. Morphology, anatomy and physiology. Deng, Yanming,Li, Congcong,Ye, Xiaoqing,Tang, Risheng,Shao, Qingsong,Li, Congcong. 2012

[7]Lead-induced changes in plant morphology, cell ultrastructure, growth and yields of tomato. Zhao, Shouping,Ye, Xuzhu,Zheng, Jici. 2011

[8]Parameter Acquirement Methods for Rule-based Model of Virtual Plant Based on Optimal Algorithms. Ding, Weilong,Xu, Lifeng,Hu, Chen,Zhang, Yuping. 2012

[9]Phylogenetic relationships of wild roses in China based on nrDNA and matK data. Qiu, Xianqin,Zhang, Hao,Wang, Qigang,Jian, Hongying,Yan, Huijun,Zhang, Ting,Wang, Jihua,Tang, Kaixue.

[10]Economic and Soil Environmental Benefits of Using Controlled-Release Bulk Blending Urea in the North China Plain. Shen, Yazhen,Du, Changwen,Zhou, Jianmin,Zhou, Zijun,Qin, Yusheng,Zhou, Zijun,Wu, Yuejin. 2017

[11]A Cotton BURP Domain Protein Interacts With -Expansin and Their Co-Expression Promotes Plant Growth and Fruit Production. Bing Xu,Jin-Ying Gou,Fu-Guang Li,Xiao-Xia Shangguan,Bo Zhao,Chang-Qing Yang,LingJian Wang,Sheng Yuan,Chang-Jun Liu,Xiao-Ya Chen. 2013

[12]Crop yield and soil carbon responses to tillage method changes in North China. Tian, Shenzhong,Ning, Tangyuan,Liu, Zhen,Li, Geng,Li, Zengjia,Tian, Shenzhong,Ning, Tangyuan,Lal, Rattan,Wang, Yu.

[13]Ectopic expression of a Chinese cabbage BrARGOS gene in Arabidopsis increases organ size. Wang, Bao,Zhou, Xincheng,Xu, Feng,Gao, Jianwei.

[14]Effects of Nitrogen Rate and Split Application Ratio on Nitrogen Use and Soil Nitrogen Balance in Cotton Fields. Li Pengcheng,Dong Helin,Dong Helin,Liu Aizhong,Liu Jingran,Sun Miao,Li Yabing,Liu Shaodong,Zhao Xinhua,Mao Shuchun. 2017

[15]Diversity and Abundance of Soil Animals as Influenced by Long-Term Fertilization in Grey Desert Soil, China. Jiang, Maibo,Wang, Xihe,Sun, Xueqing,Liu, Hua,Jiang, Maibo,Liusui, Yunhao,Jiang, Maibo,Zhao, Chengyi. 2015

[16]FIELD EVALUATION ON WATER PRODUCTIVITY OF WINTER WHEAT UNDER SPRINKLER OR SURFACE IRRIGATION IN THE NORTH CHINA PLAIN. Liu, Hai-Jun,Kang, Yaohu,Yao, Su-Mei,Sun, Ze-Qiang,Liu, Shi-Ping,Wang, Qing-Gai,Sun, Ze-Qiang. 2013

[17]An integration of photosynthetic traits and mechanisms that can increase crop photosynthesis and grain production. Black, CC,Tu, ZP,Counce, PA,Yao, PF,Angelov, MN. 1995

[18]Greenhouse gas emissions and stocks of soil carbon and nitrogen from a 20-year fertilised wheat -maize intercropping system: A model approach. Zhang, Xubo,Xu, Minggang,Sun, Nan,Wang, Boren,Zhang, Xubo,Wu, Lianhai,Liu, Jian.

[19]Projecting regional climate and cropland changes using a linked biogeophysical-socioeconomic modeling framework: 1. Model description and an equilibrium application over West Africa. Wang, Guiling,Ahmed, Kazi Farzan,Yu, Miao,Ji, Zhenming,You, Liangzhi,You, Liangzhi,Yu, Miao,Pal, Jeremy,Ji, Zhenming. 2017

[20]Which policy would work better for improved soil fertility management in sub-Saharan Africa, fertilizer subsidies or carbon credits?. Marenya, Paswel,Nkonya, Ephraim,Kato, Edward,Xiong, Wei.

作者其他论文 更多>>