Selenium Nanoparticle and Melatonin Treatments Improve Melon Seedling Growth by Regulating Carbohydrate and Polyamine
文献类型: 外文期刊
第一作者: Kang, Lu
作者: Kang, Lu;Jia, Yujiao;Pan, Canping;Kang, Lu;Mao, Jiefei;Kang, Lu;Liu, Hejiang;Zhao, Duoyong;Ju, Yanjun;Wu, Yangliu
作者机构:
关键词: bio-stimulants; melon; primary metabolism; secondary metabolism
期刊名称:INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES ( 影响因子:4.9; 五年影响因子:5.6 )
ISSN: 1661-6596
年卷期: 2024 年 25 卷 14 期
页码:
收录情况: SCI
摘要: Bio-stimulants, such as selenium nanoparticles and melatonin, regulate melon growth. However, the effects of individual and combined applications of selenium nanoparticles and melatonin on the growth of melon seedlings have not been reported. Here, two melon cultivars were sprayed with selenium nanoparticles, melatonin, and a combined treatment, and physiological and biochemical properties were analyzed. The independent applications of selenium nanoparticles, melatonin, and their combination had no significant effects on the plant heights and stem diameters of Jiashi and Huangmengcui melons. Compared with the controls, both selenium nanoparticle and melatonin treatments increased soluble sugars (6-63%) and sucrose (11-88%) levels, as well as the activity of sucrose phosphate synthase (171-237%) in melon leaves. The phenylalanine ammonia lyase (29-95%), trans cinnamate 4-hydroxylase (32-100%), and 4-coumaric acid CoA ligase (26-113%), as well as mRNA levels, also increased in the phenylpropanoid metabolism pathway. Combining the selenium nanoparticles and melatonin was more effective than either of the single treatments. In addition, the levels of superoxide dismutase (43-130%), catalase (14-43%), ascorbate peroxidase (44-79%), peroxidase (25-149%), and mRNA in melon leaves treated with combined selenium nanoparticles and melatonin were higher than in controls. The results contribute to our understanding of selenium nanoparticles and melatonin as bio-stimulants that improve the melon seedlings' growth by regulating carbohydrate, polyamine, and antioxidant capacities.
分类号:
- 相关文献
作者其他论文 更多>>
-
Selenium nanoparticle alleviates penthiopyrad-induced oxidative stress and restores the development and flavor quality of tomato fruit
作者:Liu, Rui;Zhang, Yuting;Li, Bingyan;Liu, Yuping;Pan, Canping;Zhou, Zhiqiang;Diao, Jinling;Pan, Canping
关键词:Selenium nanoparticle; Oxidative stress; Recovery; Flavor related-genes; Tomato flavor quality
-
Nano-Selenium and Glutathione Enhance Cucumber Resistance to Botrytis cinerea by Promoting Jasmonic Acid-Mediated Cucurbitacin Biosynthesis
作者:Jia, Yujiao;Chen, Lanqi;Fu, Xiaorui;Zheng, Shuyang;Wu, Tong;Cai, Runze;Wan, Xiaoying;Wang, Ping;Pan, Canping;Jia, Yujiao;Chen, Lanqi;Fu, Xiaorui;Zheng, Shuyang;Wu, Tong;Cai, Runze;Wan, Xiaoying;Pan, Canping;Kang, Lu;Wu, Yangliu;Yin, Xuebin
关键词:Nano-Se; GSH; induced resistance; jasmonic acid; cucurbitacin; Botrytis cinerea
-
Integrative omics analyses of tea (Camellia sinensis) under glufosinate stress reveal defense mechanisms: A trade-off with flavor loss
作者:Yu, Huan;Miao, Peijuan;Zhou, Chunran;Cheng, Haiyan;Dong, Qinyong;Pan, Canping;Li, Dong;Wu, Yangliu;Zhao, Yingjie;Liu, Zhusheng;Zhao, Yingjie;Zhou, Li
关键词:Tea; Glufosinate; Transcriptome; Metabolomic; Quality
-
Chlorpyrifos induced autophagy and mitophagy in common carp livers through AMPK pathway activated by energy metabolism disorder
作者:Cui, Jiawen;Hao, Zhiyu;Zhou, Qin;Qiu, Minna;Liu, Yuhang;Liu, Yuhao;Teng, Xiaohua;Kang, Lu
关键词:Chlorpyrifos; Mitophagy; Autophagy; Oxidative stress; Glucose metabolism; IBR
-
Cadmium exposure caused cardiotoxicity in common carps (Cyprinus carpio L.): miR-9-5p, oxidative stress, energetic impairment, mitochondrial division/fusion imbalance, inflammation, and autophagy
作者:Liu, Yuhao;Lin, Xu;Hao, Zhiyu;Yu, Meijin;Teng, Xiaohua;Sun, Wei;Tang, You;Kang, Lu
关键词:Heavy metal; microRNA-9-5p; Energetic impairment; Mitochondrial dynamics; NF-& kappa;B-COX-2 axis; Autophagic injury
-
Cadmium induced time-dependent kidney injury in common carp via mitochondrial pathway: Impaired mitochondrial energy metabolism and mitochondrion-dependent apoptosis
作者:Cui, Jiawen;Liu, Yuhao;Hao, Zhiyu;Liu, Yuhang;Qiu, Minna;Teng, Xiaohua;Kang, Lu;Tang, You
关键词:Cadmium; Kidney injury; Mitochondrion; Energy metabolism; Apoptosis; Integrated biomarker response
-
A new strategy to alleviate the obesity induced by endocrine disruptors-A unique lysine metabolic pathway of nanoselenium Siraitia grosvenorii to repair gut microbiota and resist obesity
作者:Wang, Yu;Sun, Wei;Yan, Sen;Meng, Zhiyuan;Jia, Ming;Tian, Sinuo;Huang, Shiran;Sun, Xiaoxuan;Han, Shihang;Pan, Canping;Diao, Jinling;Zhu, Wentao;Yan, Sen;Meng, Zhiyuan;Jia, Ming;Wang, Qiuxia
关键词:Nanoselenium; Siraitia grosvenorii; Imidacloprid; Gut microbiota; Obesity; Lysine; Acetyl CoA