ZEBRA2, encoding a carotenoid isomerase, is involved in photoprotection in rice

文献类型: 外文期刊

第一作者: Chai, Chenglin

作者: Chai, Chenglin;Fang, Jun;Liu, Yang;Tong, Hongning;Gong, Yanqing;Wang, Yiqin;Liu, Min;Cheng, Zhukuan;Chu, Chengcai;Chai, Chenglin;Fang, Jun;Liu, Yang;Tong, Hongning;Gong, Yanqing;Wang, Yiqin;Liu, Min;Cheng, Zhukuan;Chu, Chengcai;Liu, Yang;Wang, Youping;Qian, Qian

作者机构:

关键词: Carotenoid biosynthesis;Carotenoid isomerase;Rice;zebra2 mutant

期刊名称:PLANT MOLECULAR BIOLOGY ( 影响因子:4.076; 五年影响因子:4.89 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: "zebra" mutants have alternating green and chlorotic crossbands on leaf blades and are widely distributed in monocotyledonous crops. Most recently, we cloned the first responsible gene from rice, ZEBRA2, which also leads to the phenotype of rice preharvest sprouting. ZEBRA2, a single-copy gene in the rice genome, encodes a carotenoid isomerase (CRTISO), the key enzyme catalyzing the conversion of cis-lycopene to all-trans lycopene. ZEBRA2 shares high identity with known CRTISOs from other species. Expression analysis via both RT-PCR and ZEBRA2-promoter-β-glucuronidase (GUS) transgenic rice indicates that ZEBRA2 is predominantly expressed in mesophyll cells of mature leaves where active photosynthesis occurs. Consistent with the alteration in agronomic traits, the zebra2 mutant exhibits decreased photosynthetic rate and chlorophyll content. Mutation of the ZEBRA2 gene results in the accumulation of all-trans-lycopene precursor, prolycopene (7Z,9Z,7′Z,9′Z tetra cis-lycopene), in dark-grown zebra2 tissues. Light-grown zebra2 mutant exhibits the characteristic "zebra" phenotype and decreased level of lutein, the xanthophyll that is essential for efficient chl triplet quenching. More severe phenotype of the zebra2 mutant under high light intensity indicates that "zebra" phenotype might be caused by photooxidative damages. We conclude that ZEBRA2 is involved in photoprotection in rice.

分类号: Q946

  • 相关文献

[1]Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo-oxidation in rice. Fang, Jun,Chai, Chenglin,Li, Chunlai,Tang, Jiuyou,Huang, Zejun,Guo, Xiaoli,Sun, Changhui,Liu, Min,Wang, Yiqin,Cheng, Zhukuan,Chu, Chengcai,Fang, Jun,Chai, Chenglin,Li, Chunlai,Tang, Jiuyou,Huang, Zejun,Guo, Xiaoli,Sun, Changhui,Liu, Min,Wang, Yiqin,Cheng, Zhukuan,Chu, Chengcai,Fang, Jun,Chai, Chenglin,Li, Chunlai,Tang, Jiuyou,Huang, Zejun,Guo, Xiaoli,Qian, Qian,Sun, Lei,Zhang, Yan,Lu, Qingtao,Lu, Congming,Han, Bin,Chen, Fan.

[2]Comparative Transcriptomic Analysis Reveals a Series of Single Nucleotide Polymorphism between Redand White-fleshed Loquats (Eriobotrya japonica). Li, Jing,Chen, Dong,Xie, Hongjiang,Tu, Meiyan,Jia, Liu,Jiang, Guoliang,Sun, Shuxia,Li, Jing,Chen, Dong,Xie, Hongjiang,Tu, Meiyan,Jia, Liu,Jiang, Guoliang. 2017

[3]Identification and characterization of the geranylgeranyl diphosphate synthase in Deinococcus radiodurans. Liu, C.,Lin, L.,Li, T.,Tian, B.,Hua, Y.,Sun, Z.,Shen, S.. 2014

[4]Genetic analysis of phytoene synthase 1 (Psy1) gene function and regulation in common wheat. Zhai, Shengnan,Sun, Youwei,Li, Jihu,He, Zhonghu,Xia, Xianchun,Li, Genying,Song, Jianmin,Song, Guoqi,Li, Yulian,Ling, Hongqing,He, Zhonghu. 2016

[5]Molecular Link between Leaf Coloration and Gene Expression of Flavonoid and Carotenoid Biosynthesis in Camellia sinensis Cultivar 'Huangjinya'. Song, Lubin,Yao, Yuantao,Tao, Jihan,Ma, Qingping,Sun, Kang,Kaleri, Najeeb A.,Li, Xinghui,Zou, Zhongwei. 2017

[6]Loss of Function of the Carotenoid Isomerase Gene BrCRTISO Confers Orange Color to the Inner Leaves of Chinese Cabbage (Brassica rapa L. ssp pekinensis). Su, Tongbing,Yu, Shuancang,Yu, Yangjun,Zhang, Deshuang,Zhao, Xiuyun,Wang, Weihong,Zhang, Jiao Wang Fenglan.

[7]Gene identification using RNA-seq in two sweetpotato genotypes and the use of mining to analyze carotenoid biosynthesis. Qin, Z.,Li, A.,Hou, F.,Wang, Q.,Dong, S.,Zhang, L..

[8]Phytochrome B Negatively Affects Cold Tolerance by Regulating OsDREB1 Gene Expression through Phytochrome Interacting Factor-Like Protein OsPIL16 in Rice. He, Yanan,Li, Yaping,Cui, Lixin,Xie, Lixia,Zheng, Chongke,Zhou, Guanhua,Zhou, Jinjun,Xie, Xianzhi,Li, Yaping,Cui, Lixin. 2016

[9]A Kelch Motif-Containing Serine/Threonine Protein Phosphatase Determines the Large Grain QTL Trait in Rice. Hu, Zejun,Sun, Fan,Xin, Xiaoyun,Qian, Xi,Yang, Jingshui,Luo, Xiaojin,Hu, Zejun,He, Haohua,Wang, Wenxiang,Zhang, Shiyong. 2012

[10]Genome-wide identification of microRNAs and their targets in wild type and phyB mutant provides a key link between microRNAs and the phyB-mediated light signaling pathway in rice. Sun, Wei,wu, Xiu,Xie, Xianzhi,Xu, Xiao Hui,Lu, Xingbo,Sun, Hongwei,Wang, Yong. 2015

[11]Overexpression of an S-like ribonuclease gene, OsRNS4, confers enhanced tolerance to high salinity and hyposensitivity to phytochrome-mediated light signals in rice. Zheng, Jun,Wang, Yingying,He, Yanan,Zhou, Jinjun,Li, Yaping,Liu, Qianqian,Xie, Xianzhi,Zheng, Jun,Wang, Yingying,He, Yanan,Zhou, Jinjun,Xie, Xianzhi. 2014

[12]Distribution Characteristics of Soil Cadmium in Different Textured Paddy Soil Profiles and Its Relevance with Cadmium Uptake by Crops. Wang Zheng-yin,Qin Yu-sheng,Zhan Shao-jun,Yu Hua,Tu Shi-hua. 2013

[13]Overexpression of OsPIL15, a phytochromeinteracting factor- like protein gene, represses etiolated seedling growth in rice. Zhou, Jinjun,Liu, Qianqian,Wang, Yingying,Zhang, Shiyong,Cheng, Huimin,Yan, Lihua,Li, Li,Xie, Xianzhi,Zhou, Jinjun,Wang, Yingying,Zhang, Shiyong,Xie, Xianzhi,Liu, Qianqian,Xie, Xianzhi,Zhang, Fang,Chen, Fan. 2014

[14]DISTRIBUTION CHARACTERISTICS, BIOACCUMULATION, AND SOURCES OF MERCURY IN RICE AT NANSI LAKE AREA, SHANDONG PROVINCE, CHNIA. Liu, H.,Zhang, J.,Dai, J. L.,Wang, L. H.,Zhang, J.,Li, G. X.. 2015

[15]Nitrogen Status Diagnosis of Rice by Using a Digital Camera. Fan Ming-sheng,Zhang Fu-suo,Chen Xin-ping,Jia Liang-liang,Sun Yan-ming,Lue Shi-hua. 2009

[16]Influence of unflooded mulching cultivation on nitrogen uptake and utilization of fertilizer nitrogen by rice. Liu, Xuejun,Zhang, Fusuo,Mao, Daru,Zeng, Xingzhong,Lu, Shihua,Wang, Mingtian. 2008

[17]Overexpression of a phytochrome-regulated tandem zinc finger protein gene, OsTZF1, confers hypersensitivity to ABA and hyposensitivity to red light and far-red light in rice seedlings. Zhou, Jinjun,Fan, Zhongxue,Xie, Xianzhi,Zhang, Cheng,Zhou, Jinjun,Fan, Zhongxue,Xie, Xianzhi,Zhang, Cheng,Ma, Huiquan,Zhang, Fang,Chen, Fan. 2012

[18]Enhancement of innate immune system in monocot rice by transferring the dicotyledonous elongation factor Tu receptor EFR. Lu, Fen,Wang, Huiqin,Wang, Shanzhi,Jiang, Wendi,Yang, Jun,Sun, Wenxian,Lu, Fen,Wang, Huiqin,Wang, Shanzhi,Jiang, Wendi,Yang, Jun,Sun, Wenxian,Shan, Changlin,Li, Bin,Shan, Changlin,Li, Bin,Yang, Jun,Zhang, Shiyong. 2015

[19]A missense mutation in the transmembrane domain of CESA9 affects cell wall biosynthesis and plant growth in rice. Wang, Daofeng,Lan, Jinhao,Wang, Daofeng,Zhao, Jinfeng,Li, Xueyong,Yuan, Shoujiang,Yin, Liang,Guo, Baotai. 2012

[20]Mutations in the MIT3 gene encoding a caroteniod isomerase lead to increased tiller number in rice. Liu, Lihua,Peng, Peng,Qiu, Haiyang,Zhao, Jinfeng,Fang, Jingjing,Patil, Suyash Bhimgonda,Li, Xueyong,Xie, Tingting,Zhang, Wenhui,Wang, Yiqin,Fang, Shuang,Chu, Jinfang,Yuan, Shoujiang. 2018

作者其他论文 更多>>