Identification and validation of a major QTL for salt tolerance in soybean

文献类型: 外文期刊

第一作者: Hamwieh, A.

作者: Hamwieh, A.;Tuyen, D. D.;Xu, D. H.;Hamwieh, A.;Tuyen, D. D.;Cong, H.;Benitez, E. R.;Takahashi, R.

作者机构:

关键词: salt tolerance;recombinant inbred line;near isogenic lines;molecular linkage

期刊名称:EUPHYTICA ( 影响因子:1.895; 五年影响因子:2.181 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: To identify quantitative trait loci (QTLs) conditioning salt tolerance in soybean (Glycine max (L.) Merr.), two recombinant inbred line (RIL) populations derived from crosses of FT-Abyara x C01 and Jin dou No. 6 x 0197 were used in this study. The FT-Abyara x C01 population consisted of 96 F-7 RILs, and the Jin dou No. 6 x 0197 population included 81 F-6 RILs. The salt tolerant parents FT-Abyara and Jin dou No. 6 were originally from Brazil and China, respectively. The QTL analysis identified a major salt-tolerant QTL in molecular linkage group N, which accounted for 44.0 and 47.1% of the total variation for salt tolerance, in the two populations. In the FT-Abyara x C01 population, three RILs were found to be heterozygous around the detected QTL region. By selfing the three residual heterozygous lines, three sets of near isogenic lines (NILs) for salt tolerance were developed. An evaluation of salt tolerance of the NILs revealed that all the lines with FT-Abyara chromosome segment at the QTL region showed significantly higher salt tolerance than the lines without the FT-Abyara chromosome segment. Results of the NILs validated the salt tolerance QTL detected in the RIL populations.

分类号: S3

  • 相关文献

[1]Comparative Transcriptomic Analysis of Two Brassica napus Near-Isogenic Lines Reveals a Network of Genes That Influences Seed Oil Accumulation. Wang, Jingxue,Li, Chen,Yuan, Ling,Singh, Sanjay K.,Pattanaik, Sitakanta,Yuan, Ling,Du, Chunfang,Fan, Jianchun. 2016

[2]QTL mapping reveals a tight linkage between QTLs for grain weight and panicle spikelet number in rice. Luo, Xiao,Lee, Hyun-Sook,Kim, Dong-Min,Balkunde, Sangshetty,Kang, Ju-Won,Ahn, Sang-Nag,Ji, Shi-Dong,Yuan, Ping-Rong. 2013

[3]The non-gibberellic acid-responsive semi-dwarfing gene uzu affects Fusarium crown rot resistance in barley. Chen, Guangdeng,Yan, Wei,Liu, Yaxi,Manners, John M.,Liu, Chunji,Chen, Guangdeng,Liu, Yaxi,Wei, Yuming,Zheng, You-Liang,Chen, Guangdeng,Yan, Wei,Zhou, Meixue,Liu, Chunji. 2014

[4]Relative fitness of near isogenic lines for melanie and typical forms of the oriental armyworm, Mythimna separata (Walker). Luo, Li-Zhi,Zhang, Lei. 2007

[5]Insight into Differential Responses of Upland and Paddy Rice to Drought Stress by Comparative Expression Profiling Analysis. Ding, Xipeng,Li, Xiaokai,Xiong, Lizhong,Ding, Xipeng,Li, Xiaokai,Xiong, Lizhong,Ding, Xipeng. 2013

[6]A fast generation cycling system for oat and triticale breeding. Liu, Hui,Yan, Guijun,Zwer, Pamela,Wang, Haibo,Liu, Chunji,Lu, Zhanyuan,Wang, Yanxia.

[7]Primary analysis of QTG contribution to heterosis in upland cotton. ZHANG XianLiang,LIU Fang,WANG Wei,LI ShaoHui,WANG ChunYing,ZHANG XiangDi,WANG YuHong,WANG KunBo. 2010

[8]Identification of stable quantitative trait loci (QTLs) for fiber quality traits across multiple environments in Gossypium hirsutum recombinant inbred line population. Muhammad Jamshed,Fei Jia,Juwu Gong,;Koffi Kibalou Palanga,Yuzhen Shi,Junwen Li,Haihong Shang,Aiying Liu,Tingting Chen,Zhen Zhang,Juan Cai,Qun Ge,Zhi Liu,Quanwei Lu,Xiaoying Deng,Yunna Tan,Harun or Rashid,Zareen Sarfraz,Murtaza Hassan,Wankui Gong,Youlu Yuan. 2016

[9]Genetic analysis of maize kernel thickness by quantitative trait locus identification. Wen, G. Q.,Liu, X. H.,Liao, C. M.. 2015

[10]Quantitative trait locus analysis for ear height in maize based on a recombinant inbred line population. Zhang, H. M.,Wu, X. P.,Liu, X. H.,Sun, Y.,Li, Z. Q.,Zhang, H. M.,Wu, X. P.,Sun, Y.,Li, Z. Q.. 2014

[11]Dissection of component QTL expression in yield formation in rice. Guo, LB,Xing, YZ,Mei, HW,Xu, CG,Shi, CH,Wu, P,Luo, LJ. 2005

[12]QTL mapping for ear length and ear diameter under different nitrogen regimes in maize. Zhang, Hongmei,Li, Runzhi,Zheng, Zuping,Li, Zhong,He, Chuan,Liu, Daihui,Luo, Yangchun,Zhang, Guoqin,Liu, Xiaohong,Tan, Zhenbo,Zhang, Hongmei. 2010

[13]Validating a segment on the short arm of chromosome 6 responsible for genetic variation in the hull silicon content and yield traits of rice. Dai, Wei-Min,Zhang, Ke-Qin,Wu, Ji-Rong,Wang, Lei,Duan, Bin-Wu,Zheng, Kang-Le,Zhuang, Jie-Yun,Dai, Wei-Min,Cai, Run,Dai, Wei-Min. 2008

[14]Effect of high-molecular-weight glutenin allele, Glu-B1d, from synthetic hexaploid wheat on wheat quality parameters and dry, white Chinese noodle-making quality. Chen, Fang,Tang, Yonglu,Yang, Wuyun,Wu, Yuanqi,Li, Chaosu,Li, Jun,Zou, Yuchun,Mares, Daryl. 2010

[15]Effect of Environment and Genetic Recombination on Subspecies and Economic Trait Differentiation in the F-2 and F-3 Generations from indica-japonica Hybridization. Wang He-tong,Jin Feng,Xu Hai,Cheng Ling,Xia Ying-jun,Liu Chun-xiang,Chen Wen-fu,Xu Zheng-jin,Jiang Yi-jun,Lin Qing-shan. 2014

[16]High-Density SNP Map Construction and QTL Identification for the Apetalous Character in Brassica napus L.. Wang, Xiaodong,Yu, Kunjiang,Li, Hongge,Peng, Qi,Chen, Feng,Zhang, Wei,Chen, Song,Hu, Maolong,Zhang, Jiefu,Wang, Xiaodong,Zhang, Jiefu,Chen, Feng. 2015

[17]Genotype x environment interactions for chilling tolerance of rice recombinant inbred lines under different low temperature environments. Jiang, Wenzhu,Lee, Joohyun,Chu, Sang-Ho,Ham, Tae-Ho,Woo, Mi-Ok,Cho, Young-Il,Koh, Hee-Jong,Jiang, Wenzhu,Lee, Joohyun,Chu, Sang-Ho,Ham, Tae-Ho,Woo, Mi-Ok,Cho, Young-Il,Koh, Hee-Jong,Chin, Joong-Hyoun,Han, Longzhi,Xuan, Yingshi,Yuan, Donglin,Xu, Furong,Dai, Luyuan,Yea, Jong-Doo.

[18]Mapping of Quantitative Trait Loci for Contents of Macro- and Microelements in Milled Rice (Oryza sativa L.). Yu, Yong-Hong,Shao, Ya-Fang,Liu, Jie,Fan, Ye-Yang,Sun, Cheng-Xiao,Cao, Zhao-Yun,Zhuang, Jie-Yun.

[19]QTL mapping for developmental behavior of plant height in wheat (Triticum aestivum L.). Wang, Zhenghang,Ren, Qian,Li, Runzhi,Wang, Zhenghang,Wu, Xianshan,Ren, Qian,Chang, Xiaoping,Jing, Ruilian.

[20]Quantitative trait loci analysis of stem strength and related traits in soybean. Chen, Haifeng,Shan, Zhihui,Sha, Aihua,Wu, Baoduo,Yang, Zhonglu,Chen, Shuilian,Zhou, Rong,Zhou, Xinan.

作者其他论文 更多>>