Exogenous Spermidine Alleviated Low-Temperature Damage by Affecting Polyamine Metabolism and Antioxidant Levels in Apples

文献类型: 外文期刊

第一作者: He, Meiqi

作者: He, Meiqi;Zhou, Jia;Lyu, Deguo;Qin, Sijun;Xu, Gongxun

作者机构:

关键词: spermidine; cold resistance; apple; antioxidant enzymes; polyamine metabolism

期刊名称:PLANTS-BASEL ( 影响因子:4.5; 五年影响因子:4.8 )

ISSN: 2223-7747

年卷期: 2024 年 13 卷 8 期

页码:

收录情况: SCI

摘要: Low-temperature stress significantly limits the growth, development, and geographical distribution of apple cultivation. Spermidine (Spd), a known plant growth regulator, plays a vital role in the plant's response to abiotic stress. Yet, the mechanisms by which exogenous Spd enhances cold resistance in apples remain poorly understood. Therefore, the present study analyzed the effects of exogenous Spd on antioxidant enzyme activity, polyamine metabolism, and related gene expression levels of 1-year-old apple branches under low-temperature stress. Treatment with exogenous Spd was found to stabilize branch tissue biofilms and significantly reduce the levels of reactive oxygen species by elevating proline content and boosting the activity of antioxidants such as superoxide dismutase. It also upregulated the activities of arginine decarboxylase, S-adenosylmethionine decarboxylase, and spermidine synthase and the expression levels of MdADC1, MdSAMDC1, and MdSPDS1 under low-temperature stress and led to the accumulation of large amounts of Spd and spermine. Moreover, compared with the 2 mmolL-1 Spd treatment, the 1 mmolL-1 Spd treatment increased the expression levels of cold-responsive genes MdCBF1/2/3, MdCOR47, and MdKIN1, significantly. The findings suggest that exogenous Spd can enhance cold resistance in apple branches significantly. This enhancement is achieved by modulating polyamine metabolism and improving antioxidant defense mechanisms, which could be exploited to improve apple cultivation under cold stress conditions.

分类号:

  • 相关文献
作者其他论文 更多>>