The root microbiome: Community assembly and its contributions to plant fitness
文献类型: 外文期刊
第一作者: Bai, Bo
作者: Bai, Bo;Liu, Weidong;Qiu, Xingyu;Zhang, Jingying;Bai, Yang;Bai, Bo;Liu, Weidong;Zhang, Jingying;Bai, Yang;Liu, Weidong;Zhang, Jingying;Bai, Yang;Qiu, Xingyu;Zhang, Jie
作者机构:
关键词: commensal; microbiome assembly; plant fitness; plant-microbe interaction; root microbiome
期刊名称:JOURNAL OF INTEGRATIVE PLANT BIOLOGY ( 影响因子:7.061; 五年影响因子:6.002 )
ISSN: 1672-9072
年卷期: 2022 年 64 卷 2 期
页码:
收录情况: SCI
摘要: The root microbiome refers to the community of microbes living in association with a plant's roots, and includes mutualists, pathogens, and commensals. Here we focus on recent advances in the study of root commensal community which is the major research object of microbiome-related researches. With the rapid development of new technologies, plant-commensal interactions can be explored with unprecedented breadth and depth. Both the soil environment and the host plant drive commensal community assembly. The bulk soil is the seed bank of potential commensals, and plants use root exudates and immune responses to build healthy microbial communities from the available microbes. The plant microbiome extends the functional system of plants by participating in a variety of processes, including nutrient absorption, growth promotion, and resistance to biotic and abiotic stresses. Plants and their microbiomes have evolved adaptation strategies over time. However, there is still a huge gap in our understanding of the regulatory mechanisms of plant-commensal interactions. In this review, we summarize recent research on the assembly of root microbial communities and the effects of these communities on plant growth and development, and look at the prospects for promoting sustainable agricultural development through the study of the root microbiome.
分类号:
- 相关文献
作者其他论文 更多>>
-
Animal manures increased maize yield by promoting microbial activities and inorganic phosphorus transformation in reclaimed soil aggregates
作者:Sun, Xiaodong;Li, Haipeng;Zhang, Jie;Xu, Minggang;Hao, Xianjun;Gao, Wenjun;Cai, Andong
关键词:Animal manures; Microbial activities; Inorganic phosphorus fractions; Aggregate; Reclaimed soil
-
Automatic grading evaluation of winter wheat lodging based on deep learning
作者:Zang, Hecang;Su, Xinqi;Li, Guoqiang;Zhang, Jie;Zheng, Guoqing;Zang, Hecang;Li, Guoqiang;Zhang, Jie;Zheng, Guoqing;Su, Xinqi;Shen, Hualei;Wang, Yanjing;Hu, Weiguo
关键词:UAV image; winter wheat; deep learning; lodging degree; lodging area
-
Theoretical insights into the mechanism underlying aflatoxin B1 transformation by the BsCotA-methyl syringate system
作者:Wang, Xiaolu;Cui, Lin;Luo, Huiying;Huang, Huoqing;Tu, Tao;Qin, Xing;Wang, Yuan;Zhang, Jie;Wang, Yaru;Yao, Bin;Bai, Yingguo;Su, Xiaoyun;Liu, Mengting;Qi, Zheng
关键词:Laccase-Mediator System; Aflatoxin B 1; Methyl Syringate; Free Radical; Coupling
-
Assessing Changes in Climatic Suitability for Sesame Cultivation in China (1978-2019) Based on Fuzzy Mathematics
作者:Wang, Xue;Huang, Ming;Li, Youjun;Wang, Xue;Zhang, Jiantao;Zhang, Jie;Zang, Hecang;Hu, Feng;Li, Guoqiang;Zhang, Jiantao;Zhang, Jie;Zang, Hecang;Hu, Feng;Li, Guoqiang;Gao, Tongmei
关键词:sesame (Sesamum indicum L.); climate indicators; climatic suitability; climate change
-
Oxidative degradation and detoxification of multiple mycotoxins using a dye-decolorizing peroxidase from the white-rot fungus Bjerkandera adusta
作者:Shao, Huimin;Su, Xiaoyun;Wang, Yaru;Zhang, Jie;Tu, Tao;Wang, Xiaolu;Huang, Huoqing;Yao, Bin;Luo, Huiying;Qin, Xing
关键词:Aflatoxin; Zearalenone; Deoxynivalenol; Detoxification; Dye-decolorizing peroxidase
-
Identification of allelic relationship and translocation region among chromosomal translocation lines that leads to less-seed watermelon
作者:Jiao, Di;Anees, Muhammad;Zhu, Hongju;Liu, Wenge;Jiao, Di;Zhao, Hong;Zhang, Jie;Zhang, Haiying;Gong, Guoyi;Xu, Yong;Sun, Honghe;Sun, Honghe
关键词:
-
Causality-inspired crop pest recognition based on Decoupled Feature Learning
作者:Hu, Tao;Yan, Keyu;Hu, Tao;Du, Jianming;Yan, Keyu;Zhang, Jie;Xie, Chengjun;Dong, Wei;Wang, Jun
关键词:pest recognition; Decoupled Feature Learning; causal inference; deep learning