Parallel RepConv network: Efficient vineyard obstacle detection with adaptability to multi-illumination conditions
文献类型: 外文期刊
第一作者: Cui, Xuezhi
作者: Cui, Xuezhi;Zhu, Licheng;Zhao, Bo;Wang, Ruixue;Han, Zhenhao;Zhang, Weipeng;Dong, Lizhong
作者机构:
关键词: Obstacle detection; Parallel RepConv network (PRCN); Vineyard environment; Balance
期刊名称:COMPUTERS AND ELECTRONICS IN AGRICULTURE ( 影响因子:8.9; 五年影响因子:9.3 )
ISSN: 0168-1699
年卷期: 2025 年 230 卷
页码:
收录情况: SCI
摘要: Obstacle detection is crucial for autonomous navigation operating in orchard environments. This study introduces the Parallel RepConv Network (PRCN), a novel and efficient convolutional neural network (CNN) designed specifically for vineyard obstacle detection. PRCN balances speed and accuracy through several key innovations. Its backbone utilizes the Parallel RepConv (PRC) operation block, composed of two distinct RepConv modules with residual connections for enhanced feature extraction. Multi-scale features from the backbone are then fused using TriangleNet, a lightweight and efficient feature fusion network employing two different fusion methods, its compact design, requiring only five operations, contributes significantly to both detection accuracy and fast inference. To improve robustness to varying lighting conditions, a novel data augmentation technique called "Transition" generates composite images representing diverse illumination throughout the day. Furthermore, a simplified version of the Control Distance Intersection over Union (CDIoU) loss function accelerates network training. Evaluated on a vineyard obstacle dataset, PRCN achieves a mean average precision (mAP) of 64.3 % and a frame rate of 124.92 frames per second (FPS). Benchmarking against other state-of-the-art models, including YOLOv8n, YOLOv7-Tiny, YOLOv6s, YOLOv3-Tiny, YOLOv4-Tiny, and EfficientDet-D0, demonstrates PRCN's superior performance in balancing accuracy and speed, making it a promising solution for vineyard robot navigation.
分类号:
- 相关文献
作者其他论文 更多>>
-
Novel polymycoviruses are encapsidated in filamentous virions
作者:Han, Zhenhao;Jiang, Jingjing;Xu, Wenxing;Han, Zhenhao;Jiang, Jingjing;Xu, Wenxing;Han, Zhenhao;Jiang, Jingjing;Xu, Wenxing;Han, Zhenhao;Jiang, Jingjing;Xu, Wenxing;Jiang, Jingjing
关键词:dsRNA virus; mycovirus; polymycovirus; filamentous viral particle; viral morphologies; Pseudopestalotiopsis camelliae-sinensis polymycovirus 1
-
Transcriptome and WGCNA reveals the potential genetic basis of photoperiod-sensitive male sterility in soybean
作者:Yang, Yuhua;Xu, Lihong;Wang, Minggui;Chen, Shuichun;Bai, Zhiyuan;Zhang, Haiping;Zhang, Ruijun;Yang, Yuhua;He, Suqin;Zhao, Bo;Wang, Lixiang;He, Suqin;Xu, Lihong;Wang, Minggui;Chen, Shuichun;Yang, Tingting;Zhao, Bo;Wang, Lixiang;Zhang, Jiangjiang
关键词:Soybean; Photoperiod-sensitive genic male sterility; WGCNA; Photoperiod stress; Hybrid breeding
-
Genetic Diversity and Population Structure of the Chinese Three-Keeled Pond Turtle (Mauremys reevesii)
作者:Zhou, Chenyao;Zhu, Xinping;Zhao, Bo;Zhou, Chenyao;Xu, Haoyang;Liu, Haiyang;Li, Jipeng;Li, Wei;Hong, Xiaoyou;Chen, Chen;Ji, Liqin;Zhu, Xinping;Liu, Xiaoli;Xu, Haoyang;Li, Jipeng;Li, Wei;Zhu, Xinping;Liu, Xiaoli
关键词:
Mauremys reevesii ; population genomics; population structure; whole-genome resequencing -
CONSTRUCTION OF FULL-SPACE STATE MODEL AND PREDICTION OF PLANT GROWTH INFORMATION
作者:Wang, Ruixue;Chen, Kaikang;Zhao, Bo;Zhou, Liming;Zhu, Licheng;Lv, Chengxu;Han, Zhenhao;Lu, Kunlei;Feng, Xuguang;Zhao, Siyuan
关键词:Back propagation neural network; Digital twins technology; Lettuce; Plant factory; State prediction
-
DESIGN OF A DETECTION AND SORTING SYSTEM FOR BROKEN CORN KERNELS WITH AN ONLINE IDENTIFICATION METHOD
作者:Cui, Chunxiao;Yao, Yanchun;Lin, Jie;Wang, Faying;Li, Xibin;Yao, Yanchun;Cui, Chunxiao;Yao, Yanchun;Li, Xibin;Jiang, Wenjuan;Zhao, Bo
关键词:Broken; Convolutional neural network; Corn kernels; Detection; Sorting
-
Rapid Detection of Ripe Tomatoes in Unstructured Environments
作者:Qi, Jiangtao;Cong, Xv;Zhang, Weirong;Gao, Fangfang;Guo, Hui;Qi, Jiangtao;Cong, Xv;Zhang, Weirong;Gao, Fangfang;Guo, Hui;Qi, Jiangtao;Cong, Xv;Zhang, Weirong;Gao, Fangfang;Guo, Hui;Zhao, Bo
关键词:DBB heavy parameter; FasterNet; Global attention mechanism; Object detection; Tomato; Unstructured environments; YOLOv7
-
Semantic segmentation-based observation pose estimation method for tomato harvesting robots
作者:Dong, Lizhong;Zhu, Licheng;Zhao, Bo;Wang, Ruixue;Ni, Jipeng;Liu, Suchun;Chen, Kaikang;Cui, Xuezhi;Zhou, Liming
关键词:Machine vision; Deep learning; Semantic segmentation; Harvesting robot