Hydrogen sulfide counteracts chlorophyll loss in sweetpotato seedling leaves and alleviates oxidative damage against osmotic stress

文献类型: 外文期刊

第一作者: Zhang, Hua

作者: Zhang, Hua;Ye, Yong-Kang;Luo, Jian-Ping;Wang, Song-Hua;Tang, Jun;Ma, Dai-Fu

作者机构:

关键词: Antioxidant enzymes;Chlorophyll;Hydrogen sulfide (H2S);Osmotic;stress;Seedling leaves;Sweetpotato (Ipomoea batatas)

期刊名称:PLANT GROWTH REGULATION ( 影响因子:3.412; 五年影响因子:3.691 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: In this paper, effect of NaHS, a hydrogen sulfide (H2S) donor on chlorophyll and antioxidant metabolism in seedling leaves of sweetpotato under osmotic stress was investigated. With the enhancement of osmotic stress, which was mimicked by PEG-6000, chlorophyll in seedling leaves of sweetpotato (Ipomoea batatas) decreased dramatically. At 15% PEG (w/v), chlorophyll concentration reached only 50% compared with that of the controls. The osmotic-induced decrease in chlorophyll concentration could be alleviated by spraying exogenous H2S donor, NaHS in a dose-dependent manner, while little visible symptoms were observed in leaves sprayed with NaHS under control conditions. It was also shown that H2S or HS- rather than other sulfur-containing components derived from NaHS contributed to the protective role against chlorophyll degradation during osmotic stress. Further studies showed that NaHS spraying dramatically promoted the activities of superoxide dismutase, catalase, ascorbate peroxidase and decreased that of lipoxygenase and the concentrations of hydrogen peroxide (H2O2) and malondialdehyde. In addition, concentrations of endogenous H2S in NaHS-sprayed seedlings were higher than that in water-spraying control under osmotic stress. These data indicated that H2S plays a protective role in sweetpotato seedlings during osmotic stress.

分类号: S311

  • 相关文献

[1]PROTOPLASMIC FACTORS, ANTIOXIDANT RESPONSES, AND CHILLING RESISTANCE IN MAIZE. ZHANG, JX,CUI, SP,LI, JM,WEI, JK,KIRKHAM, MB.

[2]PHYSIOLOGICAL AND BIOCHEMICAL RESPONSES TO NACl SALINITY STRESS IN THREE ROEGNERIA (POACEAE) SPECIES. Xie, Jihong,Dai, Yating,Mu, Huaibin,De, Ying,Wu, Zinian,Yu, Linqing,Ren, Weibo,Xie, Jihong,Dai, Yating,Mu, Huaibin,De, Ying,Wu, Zinian,Yu, Linqing,Ren, Weibo,Chen, Hao. 2016

[3]Over-expression of ApKUP3 enhances potassium nutrition and drought tolerance in transgenic rice. Song, Z. -Z.,Song, Z. -Z.,Yang, S. -Y.,Su, Y. -H.,Yang, S. -Y.,Zuo, J.,Zuo, J..

[4]Eco-physiological Responses of Rice (Oryza sativa L.) Roots to Zinc, Chromium Stress. Zhang, Qingsong,Zhu, Xuemei,Yang, Yuanxiang,Yuan, Weiding,Lin, Lijin,Liu, Qihua,Shao, Jirong. 2010

[5]An NAM Domain Gene, GhNAC79, Improves Resistance to Drought Stress in Upland Cotton. Guo, Yaning,Yu, Shuxun,Jia, Xiaoyun,Dou, Lingling,Yu, Shuxun,Guo, Yaning,Pang, Chaoyou,Ma, Qifeng,Zhao, Fengli,Gu, Lijiao,Wei, Hengling,Wang, Hantao,Fan, Shuli,Su, Junji. 2017

[6]Accumulation and distribution of As in different tissues of Camellia sinensis. Xiong, Huabin,Duan, Changqun,Fu, Denggao,Yan, Kai,He, Feng,Xiong, Huabin,Liang, Mingzhi. 2014

[7]Expression of heat shock protein 70 in transport-stressed broiler pectoralis major muscle and its relationship with meat quality. Xing, T.,Han, M. Y.,Xu, X. L.,Zhou, G. H.,Wang, M. F.,Zhu, X. S.. 2017

[8]Catecholamine-Stimulated Growth of Aeromonas hydrophila Requires the TonB2 Energy Transduction System but Is Independent of the Amonabactin Siderophore. Dong, Yuhao,Liu, Jin,Pang, Maoda,Du, Hechao,Wang, Nannan,Awan, Furqan,Lu, Chengping,Liu, Yongjie,Pang, Maoda. 2016

[9]Gene Expression of Type VI Secretion System Associated with Environmental Survival in Acidovorax avenae subsp avenae by Principle Component Analysis. Cui, Zhouqi,Li, Bin,Kakar, Kaleem Ullah,Ojaghian, Mohammad Reza,Xie, Guanlin,Jin, Guoqiang,Wang, Yangli,Sun, Guochang. 2015

[10]tRNA Derived smallRNAs: smallRNAs Repertoire Has Yet to Be Decoded in Plants. Sablok, Gaurav,Sablok, Gaurav,Yang, Kun,Wen, Xiaopeng,Yang, Kun,Wen, Xiaopeng,Chen, Rui. 2017

[11]Molecular characterization of the soybean L-asparaginase gene induced by low temperature stress. Cho, Chang-Woo,Lee, Hye-Jeong,Chung, Eunsook,Kim, Kyoung Mi,Kim, Jee Eun Heo Jung-In,Chung, Jongil,Ma, Youzhi,Fukui, Kiichi,Lee, Dae-Won,Kim, Doh-Hoon,Chung, Young-Soo,Lee, Jai-Heou. 2007

[12]Effects of neutral salt and alkali on ion distributions in the roots, shoots, and leaves of two alfalfa cultivars with differing degrees of salt tolerance. Wang Xiao-shan,Ren Hai-long,Wei Zen-wu,Ren Wei-bo,Wang Yun-wen. 2017

[13]Evaluating the Impacts of Osmotic and Oxidative Stress on Common Carp (Cyprinus carpio, L.) Sperm Caused by Cryopreservation Techniques. Li, Ping,Li, Zhi-Hua,Dzyuba, Boris,Hulak, Martin,Rodina, Marek,Linhart, Otomar,Li, Ping,Li, Zhi-Hua,Dzyuba, Boris. 2010

[14]Cloning, Localization and Expression Analysis of ZmHsf-like Gene in Zea mays. Li Hui-cong,Li Guo-liang,Liu Zi-hui,Zhang Hong-mei,Zhang Yan-min,Guo Xiu-lin. 2014

[15]Ammonia and salinity tolerance of Penaeus monodon across eight breeding families. Chen, Jinsong,Zhou, Falin,Huang, Jianhua,Ma, Zhenhua,Jiang, Shigui,Qiu, Lihua,Chen, Jinsong,Qin, Jian G.. 2016

[16]Balancing Between Aging and Cancer: Molecular Genetics Meets Traditional Chinese Medicine. Liu, Jing,Peng, Lei,Huang, Wenhui,Sang, Lei,Lu, Siqian,Zhang, Jihong,Luo, Ying,Li, Zhiming,Pan, Jun,Li, Wanyi,Luo, Ying. 2017

[17]Co-ordinate expression of glycine betaine synthesis genes linked by the FMDV 2A region in a single open reading frame in Pichia pastoris. Wang, Sanhong,Yao, Quanhong,Tao, Jianmin,Qiao, Yushan,Zhang, Zhen.

[18]Recombination and expression of classical swine fever virus (CSFV) structural protein E2 gene in Chlamydomonas reinhardtii chroloplasts. He, Dong-Mei,Qian, Kai-Xian,Shen, Gui-Fang,Zhang, Zhi-Fang,Li, Yi-Nue,Su, Zhong-Liang,Shao, Hong-Bo.

[19]Effects of Acanthopanax senticosus Polysaccharide Supplementation on Growth Performance, Immunity, Blood Parameters and Expression of Pro-inflammatory Cytokines Genes in Challenged Weaned Piglets. Han, Jie,Bian, Lianquan,Liu, Xianjun,Zhang, Fei,Zhang, Yiran,Yu, Ning. 2014

[20]Cloning and expression of heat shock protein genes in two whitefly species in response to thermal stress. Wan, F. -H.,Yu, H.,Wan, F. -H..

作者其他论文 更多>>