Functional characterization of rice OsDof12

文献类型: 外文期刊

第一作者: Li, Dejun

作者: Li, Dejun;Yang, Chunhua;Li, Xiaobing;Gan, Qiang;Zhao, Xianfeng;Zhu, Lihuang;Li, Dejun;Yang, Chunhua;Li, Xiaobing;Gan, Qiang;Zhao, Xianfeng;Zhu, Lihuang;Li, Dejun;Yang, Chunhua;Gan, Qiang

作者机构:

关键词: Flowering time;OsDof12;Overexpression;Rice

期刊名称:PLANTA ( 影响因子:4.116; 五年影响因子:4.316 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: DNA-binding with one finger (Dot) proteins are a large family of transcription factors involved in a variety of biological processes in plants. In rice, 30 different Dof genes have been identified through genome analysis. Here we report the functional characteristics of a rice Dof gene, OsDof12, which encodes a predicted Dof protein. The nuclear localization of OsDof12 was investigated by the tran_sient expression assays of the OsDof12-GFP fusion protein in onion epidermal cells. Trans-activation assays in a yeast one-hybrid system indicated that OsDof12 had transcrip_tional activity. RNA expression analyses showed that the expression of OsDof12 was not tissue-specific in general and fluctuated at different development stages in rice. In addition, OsDof12 was strongly inhibited by dark treatments. The transgenic lines overexpressing OsDof12 showed early flow_ering under long-day (LD) conditions, whereas OsDof12 overexpression had no effect on flowering time under short-day (SD) conditions. In transgenic lines overexpressing OsDof12, the transcription levels of Hd3a and OsMADS14 were up-regulated under LD conditions but not SD conditions, whereas the expression of Hdl, OsMADS51, Ehdl and OsGI did not change under LD and SD conditions. These results suggested that OsDof12 might regulate flowering by control_ling the expression of Hd3a and OsMADS14.

分类号: 588E0003

  • 相关文献

[1]Molecular Cloning and Function Analysis of Two SQUAMOSA-Like MADS-Box Genes From Gossypium hirsutum L.. Wenxiang Zhang,Shuli Fan,Chaoyou Pang,Hengling Wei,Jianhui Ma,Meizhen Song,Shuxun Yu. 2013

[2]OsCOL16, encoding a CONSTANS-like protein, represses flowering by up regulating Ghd7 expression in rice. Wu, Weixun,Chen, Daibo,Zhang, Yingxin,Sun, Limping,Yang, Zhengfu,Zhao, Chunde,Zhan, Xiaodeng,Shen, Xihong,Yu, Ping,Fu, Yaping,Cao, Liyong,Cheng, Shihua,Wu, Weixun,Chen, Daibo,Zhang, Yingxin,Sun, Limping,Yang, Zhengfu,Zhao, Chunde,Zhan, Xiaodeng,Shen, Xihong,Yu, Ping,Fu, Yaping,Cao, Liyong,Cheng, Shihua,Zheng, Xiao-Ming,Ma, Weiwei,Zhang, Huan,Zhu, Shanshan.

[3]A CONSTANS-like transcriptional activator, OsCOL13, functions as a negative regulator of flowering downstream of OsphyB and upstream of Ehd1 in rice. Sheng, Peike,Tan, Junjie,Liu, Xuanming,Sheng, Peike,Wu, Fuqing,Tan, Junjie,Zhang, Huan,Ma, Weiwei,Chen, Liping,Wang, Jiachang,Wang, Jie,Zhu, Shanshan,Guo, Xiuping,Wang, Jiulin,Zhang, Xin,Cheng, Zhijun,Wu, Chuanyin,Wan, Jianmin,Bao, Yiqun,Wan, Jianmin.

[4]Nonfunctional alleles of long-day suppressor genes independently regulate flowering time. Zheng, Xiao-Ming,Wang, Junrui,Qiao, Weihua,Zhang, Lifang,Cheng, Yunlian,Yang, Qingwen,Feng, Li. 2016

[5]Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. Gao, He,Jin, Mingna,Zheng, Xiao-Ming,Chen, Jun,Zhang, Zhe,Sheng, Peike,Ma, Jin,Ma, Weiwei,Wang, Haiyang,Wu, Chuanyin,Wan, Jianmin,Gao, He,Zhou, Kunneng,Jiang, Ling,Liu, Shijia,Wan, Jianmin,Yuan, Dingyang,Xin, Yeyun,Deng, Huafeng,Yuan, Longping,Wang, Maoqing,Huang, Dongyi.

[6]Characterization of Transcription Factor Gene &ITOsDRAP1&IT Conferring Drought Tolerance in Rice. Huang, Liyu,Wang, Yinxiao,Wang, Wensheng,Zhao, Xiuqin,Qin, Qiao,Sun, Fan,Hu, Fengyi,Fu, Binying,Li, Zhikang,Huang, Liyu,Zhao, Yan,Li, Zichao,Fu, Binying,Li, Zhikang. 2018

[7]Involvement of miR528 in the Regulation of Arsenite Tolerance in Rice (Oryza sativa L.). Liu, Qingpo,Hu, Haichao,Zhu, Leyi,Li, Ruochen,Zhang, Liqing,Yang, Yuyan,Liu, Qingpo,Liu, Xingquan,Feng, Ying,Zhang, Hengmu.

[8]Ectopic expression of a phytochrome B gene from Chinese cabbage (Brassica rapa L. ssp pekinensis) in Arabidopsis thaliana promotes seedling de-etiolation, dwarfing in mature plants, and delayed flowering. Song, Mei-Fang,Shang, Hong-Zhong,Gu, Hai-Ke,Song, Mei-Fang,Zhang, Shu,Li, Jing-Juan,Gao, Jian-Wei,Song, Mei-Fang,Hou, Pei,Guo, Lin,Su, Liang,Yang, Jian-Ping,Xiao, Yang.

[9]Evolution of the PEBP gene family and selective signature on FT-like clade. Zheng, Xiao-Ming,Wu, Fu-Qing,Zhang, Xin,Lin, Qi-Bing,Wang, Jie,Guo, Xiu-Ping,Lei, Cai-Lin,Cheng, Zhi-Jun,Zou, Cheng,Wan, Jian-Min,Wan, Jian-Min. 2016

[10]A CIB1-LIKE transcription factor GmCIL10 from soybean positively regulates plant flowering. Yang DeGuang,Zhao Wang,Meng YingYing,Li HongYu,Liu Bin. 2015

[11]Genetic Linkage Map Construction and QTL Analysis of Two Interspecific Reproductive Isolation Traits in Sponge Gourd. Wu, Haibin,He, Xiaoli,Gong, Hao,Luo, Shaobo,Li, Mingzhu,Chen, Junqiu,Zhang, Changyuan,Huang, Wangping,Luo, Jianning,Wu, Haibin,Luo, Shaobo,Yu, Ting. 2016

[12]Association mapping of loci controlling genetic and environmental interaction of soybean flowering time under various photo-thermal conditions. Mao, Tingting,Li, Wenbin,Han, Tianfu,Mao, Tingting,Li, Jinyu,Wu, Tingting,Wu, Cunxiang,Sun, Shi,Jiang, Bingjun,Hou, Wensheng,Han, Tianfu,Wen, Zixiang,Wang, Dechun,Song, Qijian. 2017

[13]Quantitative trait loci for flowering time and morphological traits in multiple populations of Brassica rapa. Lou, Ping,Zhao, Jianjun,Del Carpio, Dunia Pino,Bonnema, Guusje,Zhao, Jianjun,Shen, Shuxing,Song, Xiaofei,Zhao, Jianjun,Wang, Xiaowu,Kim, Jung Sun,Jin, Mina,Zhao, Jianjun,Koornneef, Maarten,Zhao, Jianjun,Vreugdenhil, Dick,Koornneef, Maarten. 2007

[14]QTL effects and epistatic interaction for flowering time and branch number in a soybean mapping population of JapanesexChinese cultivars. Yang Guang,Xie Fu-ti,Zhai Hong,Wu Hong-yan,Zhang Xing-zheng,Wang Ya-ying,Li Yu-qiu,Hu Bo,Wang Lu,Xia Zheng-jun,Zhang Xing-zheng,Wang Ya-ying,Li Yu-qiu,Wang Lu,Yang Guang,Lu Shi-xiang,Wen Zi-xiang,Wang De-chun,Wang Shao-dong,Harada, Kyuya. 2017

[15]QTL analysis on plant height and flowering time in Brassica napus. Mei, D. S.,Wang, H. Z.,Hu, Q.,Li, Y. D.,Xu, Y. S.,Li, Y. C..

[16]The asparagine-rich protein NRP interacts with the Verticillium effector PevD1 and regulates the subcellular localization of cryptochrome 2. Zhou, Ruimin,Zhu, Tong,Xu, Mengyuan,Liu, Yanli,Han, Dandan,Liu, Xinqi,Han, Lei,Liu, Mengjie,Qiu, Dewen,Gong, Qingqiu.

[17]Identification of Quantitative Trait Loci (QTLs) for Flowering Time Using SSR Marker in Maize under Water Stress. Xiao, YN,Li, XH,Zhang, SH,Wang, XD,Li, MS,Zheng, YL.

[18]The protein J3 regulates flowering through directly interacting with the promoter of SOC1 in Brassica juncea. Zhou, Wenwen,Wei, Dayong,Jiang, Wei,Wang, Zhimin,Tang, Qinglin,Wang, Hebing,Zhou, Wenwen,Wei, Dayong,Jiang, Wei,Wang, Zhimin,Tang, Qinglin. 2018

[19]Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.). Xu, Liping,Hu, Kaining,Wen, Jing,Yi, Bin,Shen, Jinxiong,Ma, Chaozhi,Tu, Jinxing,Fu, Tingdong,Zhang, Zhenqian,Guan, Chunyun,Chen, Song,Hua, Wei,Li, Jiana.

[20]R2R3-MYB gene pairs in Populus: evolution and contribution to secondary wall formation and flowering time. Chai, Guohua,Wang, Zengguang,Tang, Xianfeng,Yu, Li,Qi, Guang,Wang, Dian,Yan, Xiaofei,Zhou, Gongke,Kong, Yingzhen.

作者其他论文 更多>>