Improving parcel level crop classification by integrating a novel red edge maize-cotton mapping index and machine learning: A case study in the Ebinur Lake Basin
文献类型: 外文期刊
第一作者: Xie, Yan
作者: Xie, Yan;Zeng, Hongwei;Li, Junbin;Zhao, Hang;Ahmed, Shukri;Wu, Bingfang;Xie, Yan;Zeng, Hongwei;Li, Junbin;Zhao, Hang;Wu, Bingfang;Yu, Qiangyi;Qiu, Bingwen
作者机构:
关键词: Crop classification; Red Edge Maize-Cotton Index; BFINet; Random forest; Ebinur Lake Basin
期刊名称:INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION ( 影响因子:8.6; 五年影响因子:8.6 )
ISSN: 1569-8432
年卷期: 2025 年 143 卷
页码:
收录情况: SCI
摘要: Accurate crop type classification remains challenged by dependence on ground-based samples and the presence of 'salt-and-pepper' noise. This study presented a hierarchical parcel-level classification framework for multi-crop mapping, integrating the boundary-field interaction network (BFINet), the Red Edge Maize-Cotton Index (RMCI), and a random forest (RF) classifier. BFINet enables precise delineation of agricultural field boundaries, reducing the influence of non-cropland areas and minimizing pixel-level noise. RMCI is a new spectral index designing for maize and cotton classification. The RF classifier is used to separate cropland into dominant crops and minor crops, and subsequently to classify the minor crops into different crops. Applied to 2023 Sentinel-2 imagery in the Ebinur Lake Basin (ELB), the framework produced the region's first detailed crop type map. BFINet delineated agricultural parcels in ELB with IOU of 82.3 % and OA of 87.8 %. RMCI achieved an overall accuracy (OA) of 98.6 % for maize-cotton separation, outperforming RF classifier (98.4 %). For minor crops, the RF model attained an OA of 92.3 %. Compared to directly using standalone RF approach, The hierarchical framework outperformed the standalone RF classifier in classifying all crop types in the ELB with F1 for cotton (99.04 % vs. 87.28 %), maize (97.44 % vs. 96.22 %), wheat-maize (88.2 % vs. 82.0 %), grape (92.7 % vs. 89.0 %), and zucchini (94.4 % vs.75.6 %). This framework offers a scalable and accurate solution for crop mapping in complex agricultural landscapes of arid regions.
分类号:
- 相关文献
作者其他论文 更多>>
-
Extreme surface solar ultraviolet radiation events reduce maize yields in China
作者:Guan, Haixiang;Huang, Jianxi;Li, Xuecao;Zeng, Yelu;Su, Wei;Miao, Shuangxi;Zhu, Peng;Huang, Jianxi;Huang, Jianxi;Li, Xuecao;Zeng, Yelu;Su, Wei;Miao, Shuangxi;Jin, Zhenong;Ma, Yuyang;Wu, Wenbin;Wu, Wenbin;Wu, Bingfang;Wu, Bingfang
关键词:
-
Crop sample prediction and early mapping based on historical data: Exploration of an explainable FKAN framework
作者:Cheng, Feifei;Qiu, Bingwen;Yang, Peng;Wu, Wenbin;Yu, Qiangyi;Qian, Jianping;Wu, Bingfang;Chen, Jin;Chen, Xuehong;Tubiello, Francesco N.;Tryjanowski, Piotr;Takacs, Viktoria;Duan, Yuanlin;Lin, Lihui;Wang, Laigang;Zhang, Jianyang;Dong, Zhanjie
关键词:Historical Data; Sample generation; Crop mapping; Interpretability; Google Earth Engine
-
A robust framework for mapping complex cropping patterns: The first national-scale 10 m map with 10 crops in China using Sentinel 1/2 images
作者:Qiu, Bingwen;Wu, Fangzheng;Hu, Xiang;Yang, Peng;Wu, Wenbin;Qian, Jianping;Chen, Jin;Chen, Xuehong;He, Liyin;Joe, Berry;Tubiello, Francesco N.;Wang, Laigang
关键词:Cropping patterns mapping; Model generalization; Dual-driven models; Crop diversity; Sentinel-1/2
-
Integrating Historical Crop Rotation Changes Into Soil Organic Matter Mapping in the Cropland of Southeastern China
作者:Zhou, Furong;Xue, Jie;Wang, Zheng;Jin, Wuze;Shi, Zhou;Zhou, Lianqing;Chen, Songchao;Zhou, Furong;Xue, Jie;Wang, Zheng;Jin, Wuze;Shi, Zhou;Zhou, Lianqing;Chen, Songchao;Shi, Zhou;Yu, Qiangyi
关键词:digital soil mapping; soil organic matter; crop rotation changes; remote sensing; machine learning
-
Reticulate allopolyploidy and subsequent dysploidy drive evolution and diversification in the cotton family
作者:Zhang, Ren-Gang;Shang, Hong-Yun;Liu, De-Tuan;Zhou, Min-Jie;Liu, Xiong-Fang;Ma, Yong-Peng;Zhang, Ren-Gang;Shang, Hong-Yun;Zhou, Min-Jie;Zhao, Hang;Li, Meng-Meng;Jin, Chong-Yang;Shen, Xiao-Yi;Ge, Xiao-Yang;Zhao, Hang;Liu, Yi-Hui;Conover, Justin L.;Conover, Justin L.;Jia, Kai-Hua;Shao, Shi-Cheng;Li, Da-Wei;Lysak, Martin A.;Lysak, Martin A.;Wendel, Jonathan F.
关键词:
-
Identify Tea Plantations Using Multidimensional Features Based on Multisource Remote Sensing Data: A Case Study of the Northwest Mountainous Area of Hubei Province
作者:Xiao, Pengnan;Qian, Jianping;Yu, Qiangyi;Lin, Xintao;Xu, Jie;Liu, Yujie
关键词:Google Earth Engine; tea plantation; Sentinel-1; Sentinel-2; feature selection
-
Verticillium dahliae effector Vd06254 disrupts cotton defence response by interfering with GhMYC3-GhCCD8-mediated hormonal crosstalk between jasmonic acid and strigolactones
作者:Ma, Jianhui;Jiang, Fan;Yu, Yan;Zhou, Haodan;Zhan, Jingjing;Li, Jianing;Chen, Yanli;Wang, Ye;Duan, Hongying;Ge, Xiaoyang;Zhao, Hang;Liu, Lisen;Zhou, Haodan;Zhan, Jingjing;Li, Jianing;Chen, Yanli;Wang, Ye;Ge, Xiaoyang;Zhao, Hang;Liu, Lisen;Xu, Zhenzhen;Zhao, Hang
关键词:
Verticillium dahliae ; Effector; host-pathogen interaction; cotton; transcription factor