Transcriptomic Profiling Reveals the Involvement of the Phenylpropanoid-Lignin Pathway in the Response of Maize Roots to Zinc Stress
文献类型: 外文期刊
第一作者: Zhou, Ying
作者: Zhou, Ying;Gu, Tianyu;Gao, Yan;Peng, Jiashi;Zhou, Ying;Qu, Jingtao;Zheng, Hongjian;Guan, Yuan;Gu, Tianyu;Gao, Yan;Peng, Jiashi;Gu, Tianyu;Gao, Yan;Peng, Jiashi
作者机构:
关键词:
zinc detoxification;
期刊名称:PLANTS-BASEL ( 影响因子:4.1; 五年影响因子:4.5 )
ISSN: 2223-7747
年卷期: 2025 年 14 卷 11 期
页码:
收录情况: SCI
摘要: Zinc (Zn) is an essential micronutrient required for plants to perform various metabolic functions, and plant responses to Zn deficiency have been extensively studied. However, excessive levels of Zn in soil can induce toxic effects in plants, posing a substantial challenge to global agricultural productivity. Consequently, elucidating the response mechanisms of crop plants to excessive Zn toxicity is currently of great significance. In this study, seedlings of maize inbred line B73 were exposed to excessive Zn treatment, and transcriptomic profiling of the roots was conducted at 0, 2, 6, 12, 24, and 48 h post-treatment. In addition to changes in the expression of genes encoding zinc-regulated, iron-regulated transporter-like protein (ZIP), metal tolerance protein (MTP), and yellow stripe-like (YSL) transporter family members involved in Zn transport, we observed that differentially expressed genes (DEGs) were significantly enriched in the phenylpropanoid-lignin metabolic pathway across all treatment stages, including the early (2 and 6 h), middle (12 and 24 h), and late (48 h) stages of Zn treatment. Among the 11 core structural enzyme-encoding genes involved in monolignols biosynthesis from phenylalanine in this pathway, the expression of eight of them was altered by Zn treatment. Additionally, genes encoding peroxidase (POD), which are responsible for the polymerization of monolignols into lignin, demonstrated extensive changes across all treatment stages, particularly at the late stage. The expression levels of these key enzyme genes were further validated using quantitative real-time PCR. Correspondingly, the activity of POD enzymes and the lignin content both significantly increased in Zn treated roots. These findings suggest that the phenylpropanoid-lignin metabolic pathway plays a crucial role in maize root responses to excessive Zn stress.
分类号:
- 相关文献
作者其他论文 更多>>
-
Gene expression profiles of Chinese medaka ( Oryzias sinensis ) primary hepatocytes in response to estrone (E1 ), 17 i3-estradiol (E2 ) and estriol (E3 )
作者:Wang, Yue;Lu, Junhui;Xie, Zhongtang;Huai, Narma;Zhang, Kailun;Zhou, Ying;Reze, Yilihamu;Li, Xiqing;Zhang, Zhaobin;Zhu, Hua
关键词:Oryzias sinensis; Primary hepatocytes; Natural estrogens; Vitellogenin; toxicogenomics
-
Triterpenoid saponins in tea plants: A spatial and metabolic analysis using UPLC-QTOFMS, molecular networking, and DESI-MSI
作者:Du, Zhenghua;Zhou, Ying;Guo, Shuang;Dong, Yonghui;Yu, Xiaomin;Du, Zhenghua;Zhou, Ying;Guo, Shuang;Dong, Yonghui;Yu, Xiaomin;Xu, Yongquan
关键词:Camellia sinensis; Triterpenoid saponins; MS/MS fragmentation; Molecular networking; Spatial metabolomics; Mass spectrometry imaging
-
Phosphogypsum and biosynthesized selenium nanoparticles synergistically mitigate cadmium contamination and promote maize growth in wastewater-irrigated alkaline soil
作者:Alharbi, Khadiga;Gao, Yan;Hafez, Emad M.;Gao, Yan;Hafez, Emad M.;Elatafi, Essam;Omara, Alaa El-Dein;Gadow, Samir I.;Osman, Hany S.;Alshaal, Tarek;Alshaal, Tarek;Rashwan, Emadelden;Hafez, Emad M.
关键词:Alkaline soil; Antioxidant enzymes activity; Cadmium stress; Nutritional content; Soil chemical properties; Oxidative stress
-
Multi-omics analysis of Trichoderma reesei mutant with high glucanase activity
作者:Wang, Na;Lin, Qing;Wang, Zihan;Shi, Honglin;Gao, Yan;Zen, Jun;Lou, Kai;Huo, Xiangdong;Wang, Na;Lin, Qing;Wang, Zihan;Shi, Honglin;Gao, Yan;Zen, Jun;Lou, Kai;Huo, Xiangdong;Wang, Na
关键词:
Trichoderma reesei ; beta-glucanase; Metabolomics; Transcriptomics -
African swine fever virus MGF505-3R facilitates ferroptosis to restrict TBK1-IRF3 pathway
作者:Niu, Sai;Zhou, Ying;Fang, Chunyue;Yang, Yonggen;Wang, Junjie;Dai, Hanchuan;Gao, Shandian
关键词:African swine fever virus; MGF505-3R; GPX4; ferroptosis; IRF3
-
Control locations confuse evaluation of passivation effects of iron-based biochar and selenium applications on wheat grain cadmium accumulation in a Cd-contaminated weakly alkaline soil
作者:Jing, Feng;Li, Hongbo;Zhou, Dongmei;Gao, Yan;Fan, Guangping;Zhang, Qingya;Gao, Xuezhen
关键词:field experiment; foliar Se application; Se accumulation; soil Cd heterogeneity; toxic metal; wheat Cd
-
Ball-Milling-Modified Biochar with Additives Enhances Soil Cd Passivation, Increases Plant Growth and Restrains Cd Uptake by Chinese Cabbage
作者:Lu, Xin;Sun, Jiawan;Pan, Guojun;Qi, Weicong;Zhang, Zhenhua;Gao, Yan;Lu, Xin;Gao, Yan;Zhang, Zhenhua;Zhang, Zhenhua;Xing, Jincheng
关键词:heavy metals; soil pollution; modification; adsorption; safe production