PMVT: a lightweight vision transformer for plant disease identification on mobile devices
文献类型: 外文期刊
第一作者: Li, Guoqiang
作者: Li, Guoqiang;Zhao, Qing;Wang, Yuchao;Yuan, Peiyan;Chang, Baofang;Wang, Yuchao;Yuan, Peiyan;Chang, Baofang
作者机构:
关键词: plant disease identification; vision transformer; lightweight model; attention module; APP
期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.6; 五年影响因子:6.8 )
ISSN: 1664-462X
年卷期: 2023 年 14 卷
页码:
收录情况: SCI
摘要: Due to the constraints of agricultural computing resources and the diversity of plant diseases, it is challenging to achieve the desired accuracy rate while keeping the network lightweight. In this paper, we proposed a computationally efficient deep learning architecture based on the mobile vision transformer (MobileViT) for real-time detection of plant diseases, which we called plant-based MobileViT (PMVT). Our proposed model was designed to be highly accurate and low-cost, making it suitable for deployment on mobile devices with limited resources. Specifically, we replaced the convolution block in MobileViT with an inverted residual structure that employs a 7x7 convolution kernel to effectively model long-distance dependencies between different leaves in plant disease images. Furthermore, inspired by the concept of multi-level attention in computer vision tasks, we integrated a convolutional block attention module (CBAM) into the standard ViT encoder. This integration allows the network to effectively avoid irrelevant information and focus on essential features. The PMVT network achieves reduced parameter counts compared to alternative networks on various mobile devices while maintaining high accuracy across different vision tasks. Extensive experiments on multiple agricultural datasets, including wheat, coffee, and rice, demonstrate that the proposed method outperforms the current best lightweight and heavyweight models. On the wheat dataset, PMVT achieves the highest accuracy of 93.6% using approximately 0.98 million (M) parameters. This accuracy is 1.6% higher than that of MobileNetV3. Under the same parameters, PMVT achieved an accuracy of 85.4% on the coffee dataset, surpassing SqueezeNet by 2.3%. Furthermore, out method achieved an accuracy of 93.1% on the rice dataset, surpassing MobileNetV3 by 3.4%. Additionally, we developed a plant disease diagnosis app and successfully used the trained PMVT model to identify plant disease in different scenarios.
分类号:
- 相关文献
作者其他论文 更多>>
-
Automatic grading evaluation of winter wheat lodging based on deep learning
作者:Zang, Hecang;Su, Xinqi;Li, Guoqiang;Zhang, Jie;Zheng, Guoqing;Zang, Hecang;Li, Guoqiang;Zhang, Jie;Zheng, Guoqing;Su, Xinqi;Shen, Hualei;Wang, Yanjing;Hu, Weiguo
关键词:UAV image; winter wheat; deep learning; lodging degree; lodging area
-
Assessing Changes in Climatic Suitability for Sesame Cultivation in China (1978-2019) Based on Fuzzy Mathematics
作者:Wang, Xue;Huang, Ming;Li, Youjun;Wang, Xue;Zhang, Jiantao;Zhang, Jie;Zang, Hecang;Hu, Feng;Li, Guoqiang;Zhang, Jiantao;Zhang, Jie;Zang, Hecang;Hu, Feng;Li, Guoqiang;Gao, Tongmei
关键词:sesame (Sesamum indicum L.); climate indicators; climatic suitability; climate change
-
SE-SWIN UNET FOR IMAGE SEGMENTATION OF MAJOR MAIZE FOLIAR DISEASES
作者:Yang, Yujie;Wang, Congsheng;Yang, Yujie;Wang, Congsheng;Zhao, Qing;Li, Guoqiang;Zang, Hecang;Zhao, Qing;Li, Guoqiang;Zang, Hecang
关键词:maize leaf diseases; image segmentation; Swin-Unet; Swin transformer; SENet
-
Effects of germinated brown rice and germinated black rice on people with type 2 diabetes mellitus combined with dyslipidaemia
作者:Zhao, Fengyi;Huang, Chao;Zhong, Yulian;Liao, Wang;Xia, Hui;Yang, Ligang;Wang, Shaokang;Sun, Guiju;Zhao, Fengyi;Huang, Chao;Zhong, Yulian;Liao, Wang;Xia, Hui;Yang, Ligang;Wang, Shaokang;Sun, Guiju;Zhao, Fengyi;Ren, Chuanying;Li, Lihua;Zhao, Qing;Hu, Qiaosheng;Wang, Shaokang;Wang, Shaokang
关键词:
-
YOLOC-tiny: a generalized lightweight real-time detection model for multiripeness fruits of large non-green-ripe citrus in unstructured environments
作者:Tang, Zuoliang;Xu, Lijia;Li, Haoyang;Shi, Xiaoshi;Zhou, Long;Wang, Yuchao;Wu, Zhijun;Zhao, Yongpeng;Tang, Zuoliang;Shi, Xiaoshi;Ruan, Kun;Chen, Mingyou;Luo, Lufeng;He, Yong;Ma, Wei;Yang, Ning;Qiu, Yunqiao
关键词:non-green-ripe citrus; multiripeness fruits; YOLOv7; EfficientNet; CBAM; agricultural robot
-
Coupled one-off alternate furrow irrigation with nitrogen topdressing at jointing optimizes soil nitrate-N distribution and wheat nitrogen productivity in dryland
作者:Huang, Ming;Li, Wenna;Hu, Chuan;Wu, Jinzhi;Wang, Hezheng;Fu, Guozhan;Shaaban, Muhammad;Li, Youjun;Li, Guoqiang;Li, Guoqiang
关键词:one-off alternate furrow irrigation; topdressing N; dryland winter wheat; soil nitrate-N; grain yield; N use efficiency
-
A general-purpose edge-feature guidance module to enhance vision transformers for plant disease identification
作者:Chang, Baofang;Wang, Yuchao;Zhao, Xiaoyan;Yuan, Peiyan;Chang, Baofang;Wang, Yuchao;Zhao, Xiaoyan;Yuan, Peiyan;Chang, Baofang;Wang, Yuchao;Zhao, Xiaoyan;Yuan, Peiyan;Li, Guoqiang
关键词:Plant disease identification; Vision transformers; Edge features; Deep learning