Okara protein extracted by alternating ultrasonic/alkali treatment and its improved physicochemical and functional properties
文献类型: 外文期刊
第一作者: Tang, Lu
作者: Tang, Lu;Liu, Xiaolin;Bai, Shiru;Zhao, Dan;Guo, Xuzhen;Zhu, Dandan;Su, Guiying;Fan, Bei;Wang, Bo;Zhang, Liang;Wang, Fengzhong
作者机构:
关键词: Okara; Protein; Alkali; Ultrasound; Functional properties; Emulsion stability
期刊名称:ULTRASONICS SONOCHEMISTRY ( 影响因子:9.7; 五年影响因子:9.1 )
ISSN: 1350-4177
年卷期: 2024 年 111 卷
页码:
收录情况: SCI
摘要: Okara protein (OP) is a potential plant-based protein that is beneficial to human health. In this work, an alternating ultrasonic/alkali treatment method with non-continued cavitation and thermal energy output was used to extract protein (AUA-OP) from okara to enhance the functional properties of OP and improve the stability of OP-based emulsions. The purity of AUA-OP was greater than 80%. Compared with traditional (physicalassisted) alkali treatment, FTIR and SDS-PAGE revealed that AUA-OP retained the chemical structure of the protein, but the number of ultrasound-induced exposure sites increased, with increased fluorescence intensity, surface hydrophobicity, and absolute zeta-potential. After alternating ultrasonic/alkali treatment, the protein particles were looser and smaller. In addition, the water/oil holding capacity, EAI, and ESI of AUA-OP further increased. The viscosity of the AUA-OP-stabilized emulsion was also greater. Finally, a 28-day emulsion storage assay revealed that the AUA-OP-stabilized emulsion was stable with a relatively low droplet size and creaming index, indicating great potential for the development of stable protein-based emulsions.
分类号:
- 相关文献
作者其他论文 更多>>
-
Analysis of oil-water interface behavior of soy protein isolate-/3-Lactoglobulin blend system and rheological properties in high internal phase emulsion
作者:Qiu, Runkang;Ma, Peihua;Chen, Zhaoshi;Luo, Huanxiang;Liu, Linggao;Fan, Bei;Tong, Litao;Wang, Lili;Liu, Liya;Wang, Fengzhong;Fan, Bei;Tong, Litao;Liu, Liya;Wang, Fengzhong;Fan, Bei;Liu, Liya;Wang, Fengzhong
关键词:Soy protein isolate (SPI); High internal phase emulsions; Interfacial rheology; Dynamic large oscillation rheology
-
Texture and structure of high-moisture extrudates produced from soybean protein isolates with different 7S/11S globulin ratios
作者:Fei, Chengxin;Li, Lin;Zhao, Ruojie;Wang, Xinrui;Fan, Bei;Liu, Liya;Wang, Fengzhong;Huang, Yatao;Wang, Fengzhong;Huang, Yatao
关键词:Soybean protein isolate; 7S/11S ratio; High-moisture extrusion; Texture
-
Development of whole highland barley ready-to-eat 3D printed dysphagia diet: Effect of heat treatment
作者:Kou, Delin;Zhao, Peiyao;Qiu, Runkang;Fan, Bei;Tong, Litao;Wang, Lili;Liu, Liya;Wang, Fengzhong;Kou, Delin;Li, Yifei;Fan, Bei;Liu, Liya;Wang, Fengzhong;Fan, Bei;Liu, Liya;Wang, Fengzhong
关键词:Whole grain food; Highland barley; 3D printing; Dysphagia
-
Efficient conversion of insoluble dietary fiber to soluble dietary fiber by Bacillus subtilis BSNK-5 fermentation of okara and improvement of their structural and functional properties
作者:Meng, Weimin;Hu, Miao;Zhang, Pengfei;Wang, Jiao;Yuan, Zifan;Wang, Fengzhong;Li, Shuying;Wang, Fengzhong;Wang, Fengzhong
关键词:Okara; Soluble dietary fiber; Insoluble dietary fiber; Bacillus subtilis; Processing characteristics; Functional characteristics
-
Development of soy protein emulsion gels-based 3D printed dysphagia foods: Effects of the egg white protein supplementation
作者:Zhao, Peiyao;Kou, Delin;Qiu, Runkang;Tong, Litao;Wang, Lili;Fan, Bei;Wang, Fengzhong;Liu, Liya;Li, Shugang;Awais, Muhammad
关键词:3D printing; Soy protein isolate; Egg white protein; Dysphagia food
-
The potential endocrine-disrupting of fluorinated pesticides and molecular mechanism of EDPs in cell models
作者:Liu, Yalan;Tan, Jianxin;Liu, Yalan;Wang, Fengzhong;Li, Lin;Fan, Bei;Li, Minmin;Kong, Zhiqiang
关键词:Pesticides; Endocrine-disrupting effect; Estrogen receptor; Cell models; Toxic mechanism
-
Multi-scale structural influence of starch on their interaction of caffeic acid and starch after freeze-thaw: Taking potato starch and lotus seed starch as examples
作者:Zhao, Renjie;Li, Chi;Liu, Qiannan;Liu, Wei;Zhang, Liang;Zhang, Zhenzhen;Zhao, Ruixuan;Hu, Honghai;Yao, Jia;Li, Chi
关键词:Caffeic acid; Starch; Interaction