A synthetic antibiotic class with a deeply-optimized design for overcoming bacterial resistance

文献类型: 外文期刊

第一作者: Feng, Jin

作者: Feng, Jin;Peng, Dapeng;Wang, Xu;Feng, Jin;Weng, Defeng;Wang, Xu;Zheng, Youle;Ma, Wanqing;Weng, Defeng;Peng, Dapeng;Wang, Xu;Xu, Yindi;Wang, Zhifang

作者机构:

期刊名称:NATURE COMMUNICATIONS ( 影响因子:14.7; 五年影响因子:16.1 )

ISSN:

年卷期: 2024 年 15 卷 1 期

页码:

收录情况: SCI

摘要: The lack of new drugs that are effective against antibiotic-resistant bacteria has caused increasing concern in global public health. Based on this study, we report development of a modified antimicrobial drug through structure-based drug design (SBDD) and modular synthesis. The optimal modified compound, F8, was identified, which demonstrated in vitro and in vivo broad-spectrum antibacterial activity against drug-resistant bacteria and effectively mitigated the development of resistance. F8 exhibits significant bactericidal activity against bacteria resistant to antibiotics such as methicillin, polymyxin B, florfenicol (FLO), doxycycline, ampicillin and sulfamethoxazole. In a mouse model of drug-resistant bacteremia, F8 was found to increase survival and significantly reduce bacterial load in infected mice. Multi-omics analysis (transcriptomics, proteomics, and metabolomics) have indicated that ornithine carbamoyl transferase (arcB) is a antimicrobial target of F8. Further molecular docking, Isothermal Titration Calorimetry (ITC), and Differential Scanning Fluorimetry (DSF) studies verified arcB as a effective target for F8. Finally, mechanistic studies suggest that F8 competitively binds to arcB, disrupting the bacterial cell membrane and inducing a certain degree of oxidative damage. Here, we report F8 as a promising candidate drug for the development of antibiotic formulations to combat antibiotic-resistant bacteria-associated infections. Authors present the in vivo assessment of a compound, F8, from a synthetic antibiotic class, showing efficacy against antibiotic resistance bacteria and insight into its mechanism of action.

分类号:

  • 相关文献
作者其他论文 更多>>