Electrocatalytic oxidation of phytohormone salicylic acid at copper nanoparticles-modified gold electrode and its detection in oilseed rape infected with fungal pathogen Sclerotinia sclerotiorum

文献类型: 外文期刊

第一作者: Wang, Zhan

作者: Wang, Zhan;Xu, Qiao;Yu, Jiu-Hong;Yang, Qin;Zhao, Yuan-Di;Wei, Fang;Liu, Sheng-Yi;Huang, Jun-Yan;Dong, Xu-Yan;Chen, Hong

作者机构:

关键词: Salicylic acid;Electrocatalytic oxidation;Copper nanoparticles;Phytohormone

期刊名称:TALANTA ( 影响因子:6.057; 五年影响因子:5.386 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Salicylic acid (SA) is a biological substance that acts as a phytohormone and plays an important role in signal transduction in plants. It is important to accurately and sensitively detect SA levels. A gold electrode modified with copper nanoparticles was used to assay the electrocatalytic oxidation of salicylic acid. It was found that the electrochemical behavior of salicylic acid was greatly improved at copper nanoparticles, indicating that anodic oxidation could be catalyzed at copper nanoparticles. And the pH had remarkable effect on the electrochemical process, a very well-defined oxidation peak appeared at pH 13.3 (0.2 M NaOH). The kinetics parameters of this process were calculated and the heterogeneous electron transfer rate constant (k) was determined to be 1.34 x 10(-3) cm s(-1), and (1 - alpha)n(alpha) was 1.22. The gold electrode modified with copper nanoparticles could detect SA at a higher sensitivity than common electrodes. The electrode was used to detect the SA levels in oilseed rape infected with the fungal pathogen Sclerotinia sclerotiorum. The results showed that the SA concentration reached a maximum during the 10th-25th hours after infection. This result was very similar to that determined by HPLC, indicating that the gold electrodes modified with copper nanoparticles could be used as salicylic acid sensors.

分类号: O65

  • 相关文献

[1]Seed treatment with salicylic acid invokes defence mechanism of Helianthus annuus against Orobanche cumana. Yang, C.,Hu, L. Y.,Ali, B.,Islam, F.,Zhou, W. J.,Yang, C.,Hu, L. Y.,Ali, B.,Islam, F.,Zhou, W. J.,Bai, Q. J.,Yun, X. P.,Yoneyama, K..

[2]Integrated transcriptome, proteome and physiology analysis of Epinephelus coioides after exposure to copper nanoparticles or copper sulfate. Wang, Tao,Han, Shiqun,Yan, Shaohua,Wang, Tao,Long, Xiaohua,Chen, Xiaoyan,Liu, Yuanrui,Liu, Zhaopu,Yan, Shaohua.

[3]Effective immobilization of Ru(bpy)(3)(2+) by functional composite phosphomolybdic acid anion on an electrode surface for solid-state electrochemiluminescene to sensitive determination of NADH. Li, Yali,Yang, Xiurong,Yang, Fan,Li, Yali,Wang, Yingping,Zheng, Peihua,Liu, Xiaoxu,Wang, Yingping. 2012

[4]Amperometric nitrite sensor based on a glassy carbon electrode modified with multi-walled carbon nanotubes and poly(toluidine blue). Dai, Juan,Deng, Dongli,Zhang, Jinzhong,Deng, Fei,He, Shuang,Deng, Dongli,Yuan, Yali,Zhang, Jinzhong.

[5]NPR1-dependent salicylic acid signaling is not involved in elevated CO2-induced heat stress tolerance in Arabidopsis thaliana. Li, Xin,Ahammed, Golam Jalal,Li, Xin,Yu, Jingquan,Shi, Kai. 2015

[6]Genome-wide characterization and comparative analysis of the MLO gene family in cotton. Xiaoyan Wang,Qifeng Ma,Lingling Dou,Zhen Liu,Renhai Peng,Shuxun Yu. 2016

[7]Identification and Functional Analysis of microRNAs Involved in the Anther Development in Cotton Genic Male Sterile Line Yu98-8A. Xiaojie Yang,Yuanming Zhao,Deyi Xie,Yao Sun,Xunlu Zhu,Nardana Esmaeili,Zuoren Yang,Ye Wang,Guo Yin,Shuping Lv,Lihong Nie,Zhongjie Tang,Fu’an Zhao,Wu Li,Neelam Mishra,Li Sun,Wei Zhu,Weiping Fang. 2016

[8]Expression analysis of genes encoding double B-box zinc finger proteins in maize. Li, Wenlan,Sun, Qi,Li, Wencai,Yu, Yanli,Zhao, Meng,Meng, Zhaodong,Wang, Jingchao. 2017

[9]Toxicity and bio-effects of CuO nanoparticles on transgenic Ipt-cotton. Nhan Le Van,Rui, Yukui,Shang, Jianying,Liu, Shutong,Liu, Liming,Nhan Le Van,Trung Nguyen Quang,Rui, Yukui,Cao, Weidong. 2016

[10]Molecular regulation of terpenoid indole alkaloids pathway in the medicinal plant, Catharanthus roseus. Zhou, Mei-Liang,Wu, Yan-Min,Tang, Yi-Xiong,Zhou, Mei-Liang,Shao, Ji-Rong,Hou, Hong-Li,Zhu, Xue-Mei. 2010

[11]Expression Profiling of a Novel Calcium-Dependent Protein Kinase Gene, LeCPK2, from Tomato (Solanum lycopersicum) under Heat and Pathogen-Related Hormones. Zhang, Zhi-Li,Chang, Wen-Jun,Li, Wei-Jing,Chang, Wen-Jun,Li, Wei-Jing,Su, Huo-Sheng. 2009

[12]Construction of ethylene regulatory network based on the phytohormones related gene transcriptome profiling and prediction of transcription factor activities in soybean. Cheng, Yunqing,Liu, Jianfeng,Liu, Qiang,Liu, Chunming,Yang, Xiangdong,Ma, Rui.

[13]Genome-scale identification of MLO domain-containing genes in soybean (Glycine max L. Merr.). Shen, Qi,Zhao, Jinming,Xiang, Yang,Shen, Qi,Du, Caifu,Xiang, Yang,Qin, Xinrong,Cao, Jinxuan. 2012

[14]Age-dependent and jasmonic acid-induced laticifer-cell differentiation in anther callus cultures of rubber tree. Tan, Deguan,Sun, Xuepiao,Zhang, Jiaming. 2014

[15]Analysis and cloning of the synthetic pathway of the phytohormone indole-3-acetic acid in the plant-beneficial Bacillus amyloliquefaciens SQR9. Shao, Jiahui,Li, Shuqing,Zhang, Guishan,Zhang, Ruifu,Shao, Jiahui,Li, Shuqing,Zhang, Nan,Cui, Xiaoshuang,Zhou, Xuan,Shen, Qirong,Zhang, Ruifu,Shao, Jiahui,Li, Shuqing,Zhang, Nan,Cui, Xiaoshuang,Zhou, Xuan,Shen, Qirong,Zhang, Ruifu. 2015

[16]Molecular regulation of terpenoid indole alkaloids pathway in the medicinal plant, Catharanthus roseus. Zhou, Mei-Liang,Shao, Ji-Rong,Zhou, Mei-Liang,Wu, Yan-Min,Tang, Yi-Xiong,Hou, Hong-Li,Zhu, Xue-Mei. 2011

[17]Expression analysis of a novel pyridoxal kinase messenger RNA splice variant, PKL, in oil rape suffering abiotic stress and phytohormones. Yu, Shunwu,Luo, Lijun. 2008

[18]IPA1 functions as a downstream transcription factor repressed by D53 in strigolactone signaling in rice. Song, Xiaoguang,Lu, Zefu,Yu, Hong,Shao, Gaoneng,Xiong, Jinsong,Meng, Xiangbing,Jing, Yanhui,Liu, Guifu,Xiong, Guosheng,Duan, Jingbo,Wang, Yonghong,Li, Jiayang,Song, Xiaoguang,Lu, Zefu,Yu, Hong,Shao, Gaoneng,Xiong, Jinsong,Meng, Xiangbing,Jing, Yanhui,Liu, Guifu,Xiong, Guosheng,Duan, Jingbo,Wang, Yonghong,Li, Jiayang,Shao, Gaoneng,Li, Jiayang,Yao, Xue-Feng,Liu, Chun-Ming,Li, Hongqing,Lu, Zefu,Xiong, Jinsong,Xiong, Guosheng. 2017

[19]CkDREB gene in Caragana korshinskii is involved in the regulation of stress response to multiple abiotic stresses as an AP2/EREBP transcription factor. Wang, Xuemin,Chen, Xiaofang,Gao, Hongwen,Wang, Zan,Sun, Guizhi,Liu, Yun.

[20]Rice endophyte Pantoea agglomerans YS19 promotes host plant growth and affects allocations of host photosynthates. Feng, Y.,Shen, D.,Song, W..

作者其他论文 更多>>