Transcriptomic Regulatory Mechanisms of Isoflavone Biosynthesis in Trifolium pratense

文献类型: 外文期刊

第一作者: Cao, Kefan

作者: Cao, Kefan;Zhang, Huimin;Ma, Yiming;Wu, Qian;Wang, Mingjiu;Wang, Sijing;Huang, Fan

作者机构:

关键词: Trifolium pratense; isoflavone biosynthesis; transcriptomics; differentially expressed genes

期刊名称:AGRONOMY-BASEL ( 影响因子:3.4; 五年影响因子:3.8 )

ISSN:

年卷期: 2025 年 15 卷 5 期

页码:

收录情况: SCI

摘要: Isoflavones are important secondary metabolites in leguminous plants with significant physiological functions and economic value. However, the genetic variation, transcriptional regulation, and metabolic pathways governing isoflavone biosynthesis in Trifolium pratense remain largely unexplored. In this study, we systematically analyzed 500 accessions of T. pratense for isoflavone content and performed RNA-seq-based transcriptomic profiling to investigate the molecular mechanisms underlying isoflavone biosynthesis. Cluster analysis revealed significant genetic variation, with distinct transcriptional profiles between high- (H1, H2, H3) and low-isoflavone (L1, L2, L3) groups. GO and KEGG pathway enrichment analyses identified key metabolic pathways, including phenylpropanoid metabolism, flavonoid biosynthesis, carbohydrate metabolism, and hormone signaling, which play crucial roles in isoflavone regulation. Weighted gene co-expression network analysis (WGCNA) identified three key gene modules-MEblue, MEturquoise, and MEyellow-strongly correlated with isoflavone content. The MEturquoise and MEyellow modules were upregulated in high-isoflavone groups and were enriched in phenylpropanoid biosynthesis, lipid metabolism, and transcriptional regulation, suggesting that these pathways actively promote isoflavone accumulation. Conversely, the MEblue module, highly expressed in low-isoflavone groups, was enriched in sugar metabolism and MAPK signaling, indicating a potential metabolic flux shift away from secondary metabolism. Moreover, key rate-limiting enzymes (PAL, C4H, 4CL, CHS, and IFS) exhibited higher expression in high-isoflavone groups, highlighting their importance in precursor supply and enzymatic catalysis. Additionally, transcription factors such as MYB, WRKY, and NAC were identified as potential regulators of isoflavone biosynthesis, indicating a complex interplay between hormonal, circadian, and environmental signals. This study provides a comprehensive molecular framework for understanding isoflavone biosynthesis in T. pratense and identifies key regulatory genes and metabolic pathways that could be targeted for genetic improvement, metabolic engineering, and molecular breeding. The findings offer valuable insights into enhancing isoflavone production in legumes for agricultural, nutritional, and pharmaceutical applications.

分类号:

  • 相关文献
作者其他论文 更多>>