Supplying silicon alters microbial community and reduces soil cadmium bioavailability to promote health wheat growth and yield

文献类型: 外文期刊

第一作者: Song, Alin

作者: Song, Alin;Wang, Enzhao;Wang, Sai;Bi, Jingjing;Fan, Fenliang;Li, Zimin;Xu, Duanyang;Wang, Hailong;Jeyakumar, Paramsothy;Li, Zhongyang

作者机构:

关键词: Passivating agents; Silicon; Cadmium; Bacterial microorganism; Health wheat growth

期刊名称:SCIENCE OF THE TOTAL ENVIRONMENT ( 影响因子:7.963; 五年影响因子:7.842 )

ISSN: 0048-9697

年卷期: 2021 年 796 卷

页码:

收录情况: SCI

摘要: Soil amendments of black bone (BB), biochar (BC), silicon fertilizer (SI), and leaf fertilizer (LF) play vital roles in decreasing cadmium (Cd) availability, thereby supporting healthy plant growth and food security in agroecosystems. However, the effect of their additions on soil microbial community and the resulting soil Cd bioavailability, plant Cd uptake and health growth are still unknown. Therefore, in this study, BB, BC, SI, and LF were selected to evaluate Cd amelioration in wheat grown in Cd-contaminated soils. The results showed that relative to the control, all amendments significantly decreased both soil Cd bioavailability and its uptake in plant tissues, promoting healthy wheat growth and yield. This induced-decrease effect in seeds was the most obvious, wherein the effect was the highest in SI (52.54%), followed by LF (43.31%), and lowest in BC (35.24%) and BB (31.98%). Moreover, the induced decrease in soil Cd bioavailability was the highest in SI (29.56%), followed by BC (28.85%), lowest in LF (17.55%), and BB (15.30%). The significant effect in SI likely resulted from a significant increase in both the soil bioavailable Si and microbial community (Acidobacteria and Thaumarchaeota), which significantly decreased soil Cd bioavailability towards plant roots. In particular, a co-occurrence network analysis indicated that soil microbes played a substantial role in wheat yield under Si amendment. Therefore, supplying Si alters the soil microbial community, positively and significantly interacting with soil bioavailable Si and decreasing Cd bioavailability in soils, thereby sustaining healthy crop development and food quality. (c) 2021 Published by Elsevier B.V.

分类号:

  • 相关文献
作者其他论文 更多>>