Divergent chemical compositions of soil organic matter size fractions under long-term amendments across a climate gradient

文献类型: 外文期刊

第一作者: Song, Fanbo

作者: Song, Fanbo;Wang, Yidong;Hu, Ning;Lou, Yilai;Zhang, Huimin;Li, Dongchu;Zhu, Ping;Gao, Hongjun;Zhang, Shuiqing

作者机构:

关键词: N-containing compounds; Organo-mineral association; Particulate organic matter; Py-GC/MS; Soil organic matter chemistry

期刊名称:SOIL & TILLAGE RESEARCH ( 影响因子:6.5; 五年影响因子:7.3 )

ISSN: 0167-1987

年卷期: 2024 年 242 卷

页码:

收录情况: SCI

摘要: The chemical composition of soil organic matter (SOM) is the basis for its stabilization and functions. However, it is not clear how SOM chemical composition varies among size fractions under long-term fertilizations across a climate gradient. We explored this question in three soils: Ferralic Cambisol (subtropics), Calcaric Cambisol (warm temperate zone) and Luvic Phaeozem (mid-temperate zone) under five amendments: Control, N, NPK, NPK + Straw and NPK + Manure. The molecular composition of coarse particulate (cPOM, 250-2000 mu m), fine particulate (fPOM, 53-250 mu m) and mineral-associated OM (MAOM, <53 mu m) were measured by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). Among the three soils, the molecular composition of whole SOM diverged greatly, with much more relative abundances of aliphatic compounds and N-containing compounds in the Calcaric Cambisol and the Luvic Phaeozem, respectively. Within the Luvic Phaeozem (clay loam) and Ferralic Cambisol (clay), the molecular composition of SOM mainly varied among physical sizes, with selective preservations of aromatics and lignin in POM and enrichments of N-containing compounds in MAOM, but not amending regimes (even straw and manure incorporations). By contrast, the molecular composition of SOM changed little among physical sizes under various amendments in the Calcaric Cambisol (sandy loam). In conclusion, soil type, not quantity and quality of amendments, primarily regulated the molecular composition of SOM across the climate gradient. Moreover, the divergence of SOM molecular composition among physical size fractions was related to soil texture, with higher divergence in clay and clay loam but reverse in sandy loam soil.

分类号:

  • 相关文献
作者其他论文 更多>>