Peanut Growth Promotion and Biocontrol of Blight by Sclerotium rolfsii with Rhizosphere Bacterium, Bacillus siamensis YB-1632
文献类型: 外文期刊
第一作者: Chang, Yinghang
作者: Chang, Yinghang;Zhang, Limei;Wu, Kun;Xu, Shuxia;Dong, Qianqian;Xu, Wen;Xia, Mingcong;Zhang, Jie;Sun, Runhong;Wu, Chao;Yang, Lirong;Dong, Qianqian;Xu, Wen;Xia, Mingcong;Zhang, Jie;Sun, Runhong;Wu, Chao;Yang, Lirong;Dong, Qianqian;Xu, Wen;Xia, Mingcong;Zhang, Jie;Sun, Runhong;Wu, Chao;Yang, Lirong;Goodwin, Paul H.
作者机构:
关键词: induced systemic resistance; peanut sclerotium blight; plant growth-promoting rhizobacterium; rhizosphere
期刊名称:AGRONOMY-BASEL ( 影响因子:3.4; 五年影响因子:3.8 )
ISSN:
年卷期: 2025 年 15 卷 3 期
页码:
收录情况: SCI
摘要: A total of 34 strains of bacteria were isolated from peanut rhizosphere soil, and all showed some in vitro inhibition of the pathogen Sclerotium rolfsii in co-culture. Strain YB-1632 produced the highest level of inhibition and also produced relatively high levels of biofilm in culture. Cell-free culture extracts and volatiles from it were also inhibitory to S. rolfsii. Based on 16S rDNA, gyrA, and gyrB sequences, it was identified as Bacillus siamensis. In the greenhouse, seed treatment resulted in a level of control of peanut sclerotium blight (PSB) comparable to that of a standard fungicide seed treatment. In addition to its antifungal activity, YB-1632 could induce disease resistance in peanut seedlings based on increasing peanut defense enzyme activities and gene expression. The priming of defense gene expression against a necrotrophic pathogen is consistent with Induced Systemic Resistance (ISR). In addition, YB-1632 produced enzyme activities in culture associated with root colonization and plant growth promotion. In the greenhouse, it increased peanut seedling growth, indicating the YB-1632 is a plant growth-promoting rhizobacterium (PGPR). In summary, YB-1632 is a promising novel PSB biocontrol agent and PGPR of peanut.
分类号:
- 相关文献
作者其他论文 更多>>
-
Comfort temperature assessment for honeybee colonies based on long-term monitoring
作者:Lu, Yuntao;Wu, Wei;Zhang, Jie;Li, Shijuan;Liu, Shengping;Hong, Wei;Hong, Wei
关键词:Extreme weather; Comfort assessment model; Precision beekeeping
-
Structural insights into the mechanism of phosphate recognition and transport by XPR1
作者:Zhang, Wenhui;Chen, Yanke;Guan, Zeyuan;Tang, Meng;Du, Zhangmeng;Zhang, Jie;Cheng, Meng;Zuo, Jiaqi;Liu, Yan;Wang, Qiang;Liu, Yanjun;Zhang, Delin;Yin, Ping;Ma, Ling;Liu, Zhu;Wang, Yong;Liu, Zhu
关键词:
-
Influence of the 'painless' TRP channel on temperature-dependent escape and humidity-related pupation in Bactrocera dorsalis larvae
作者:Zhang, Yan;Zhang, Panpan;Luo, Zhicai;Wang, Qi;Zhang, Jie;Yang, Minghuan;Yan, Shanchun;Liu, Wei;Wang, Guirong
关键词:Bactrocera dorsalis; Bdorpainless; CRISPR/Cas9; extreme environments; escape behavior
-
Monitoring the insecticide susceptibility of a newly introduced invasive species, Tuta absoluta (Meyrick), in China
作者:Zhang, Yi-bo;Li, Han;Tian, Xiao-cao;Wang, Hao;Geng, Li-li;Zhang, Jie;Liu, Wan-xue;Wan, Fang-hao;Zhang, Gui-fen;Han, Peng;Tian, Xiao-cao;Guedes, Raul-Narciso;Nicolas, Desneux
关键词:C hemical control; Leaf miner; Diamide; Spinosyn; Bacillus thuringiensis
-
The impact of temperature regulation measures on the thermodynamic characteristics of bee colonies based on finite element simulation
作者:Lu, Yuntao;Wu, Wei;Zhang, Jie;Li, Shijuan;Liu, Shengping;Hong, Wei;Hong, Wei;Hong, Wei;Xu, Baohua;Wei, Kun
关键词:Colony temperature distribution; Thermodynamic simulation; Temperature regulation
-
Identification and functional analysis of Wall-Associated Kinase genes in Nicotiana tabacum
作者:Li, Ling;Li, Jintao;Zhang, Zhiqiang;Miao, Yangfan;Li, Wei;Cao, Linggai;Liu, Jie;Zhang, Jie;Wang, Rengang;Yu, Shizhou;Zhang, Zhiqiang;Ren, Zhongying;Li, Wei
关键词:wall-associated kinase; tobacco; evolutionary; expression analysis; stress response
-
Paenibacillus polymyxa J2-4 induces cucumber to enrich rhizospheric Pseudomonas and contributes to Meloidogyne incognita management under field conditions
作者:Shi, Qianqian;Fu, Qi;Zhang, Jie;Hao, Guangyang;Liang, Chen;Duan, Fangmeng;Zhao, Honghai;Song, Wenwen;Ma, Juan
关键词:Paenibacillus polymyxa; Meloidogyne incognita; biocontrol efficiency; rhizosphere microbiome; Pseudomonas fluorescens