YOLOv8-MSP-PD: A Lightweight YOLOv8-Based Detection Method for Jinxiu Malus Fruit in Field Conditions

文献类型: 外文期刊

第一作者: Liu, Yi

作者: Liu, Yi;Han, Xiang;Zhang, Hongjian;Liu, Shuangxi;Yan, Yinfa;Sun, Linlin;Jing, Linlong;Wang, Yongxian;Wang, Jinxing;Zhang, Hongjian;Wang, Jinxing;Ma, Wei

作者机构:

关键词: Jinxiu Malus fruit; YOLOv8; lightweight; multi-scale feature fusion; object detection

期刊名称:AGRONOMY-BASEL ( 影响因子:3.4; 五年影响因子:3.8 )

ISSN:

年卷期: 2025 年 15 卷 7 期

页码:

收录情况: SCI

摘要: Accurate detection of Jinxiu Malus fruits in unstructured orchard environments is hampered by frequent overlap, occlusion, and variable illumination. To address these challenges, we propose YOLOv8-MSP-PD (YOLOv8 with Multi-Scale Pyramid Fusion and Proportional Distance IoU), a lightweight model built on an enhanced YOLOv8 architecture. We replace the backbone with MobileNetV4, incorporating unified inverted bottleneck (UIB) modules and depth-wise separable convolutions for efficient feature extraction. We introduce a spatial pyramid pooling fast cross-stage partial connections (SPPFCSPC) module for multi-scale feature fusion and a modified proportional distance IoU (MPD-IoU) loss to optimize bounding-box regression. Finally, layer-adaptive magnitude pruning (LAMP) combined with knowledge distillation compresses the model while retaining performance. On our custom Jinxiu Malus dataset, YOLOv8-MSP-PD achieves a mean average precision (mAP) of 92.2% (1.6% gain over baseline), reduces floating-point operations (FLOPs) by 59.9%, and shrinks to 2.2 MB. Five-fold cross-validation confirms stability, and comparisons with Faster R-CNN and SSD demonstrate superior accuracy and efficiency. This work offers a practical vision solution for agricultural robots and guidance for lightweight detection in precision agriculture.

分类号:

  • 相关文献
作者其他论文 更多>>