Transcriptional regulation of phospholipid transport in cotton fiber elongation by GhMYB30D04-GhHD1 interaction complex

文献类型: 外文期刊

第一作者: Song, Qingwei

作者: Song, Qingwei;Du, Chuanhui;Xu, Yiyang;Zuo, Kaijing;Wang, Jin;Lin, Min

作者机构:

关键词: cotton fiber; fiber cell elongation; MYB-HD-ZIP transcription complex; phospholipid transport; transcriptional regulation

期刊名称:JOURNAL OF INTEGRATIVE PLANT BIOLOGY ( 影响因子:9.3; 五年影响因子:10.8 )

ISSN: 1672-9072

年卷期: 2024 年 66 卷 11 期

页码:

收录情况: SCI

摘要: Cotton fiber length is basically determined by well-coordinated gene expression and phosphatidylinositol phosphates (PIPs) accumulation during fiber elongation but the regulatory mechanism governing PIPs transport remains unknown. Here, we report a MYB transcription factor GhMYB30D04 in Gossypium hirsutum that promotes fiber elongation through modulating the expression of PIP transporter gene GhLTPG1. Knockout of GhMYB30D04 gene in cotton (KO) results in a reduction of GhLTPG1 transcripts with lower accumulation of PIPs, leading to shorter fibers and lower fiber yield. Conversely, GhMYB30D04 overexpression (GhMYB30D04-OE) causes richer PIPs and longer cotton fibers, mimicking the effects of exogenously applying PIPs on the ovules of GhMYB30D04-KO and wild type. Furthermore, GhMYB30D04 interacts with GhHD1, the crucial transcription factor of fiber initiation, to form an activation complex stabilized by PIPs, both of which upregulate GhLTPG1 expression. Comparative omics-analysis revealed that higher and extended expressions of LTPG1 in fiber elongation mainly correlate with the variations of the GhMYB30D04 gene between two cotton allotetraploids, contributing to longer fiber in G. babardense. Our work clarifies a mechanism by which GhHD1-GhMYB30D04 form a regulatory module of fiber elongation to tightly control PIP accumulation. Our work still has an implication that GhMYB30D04-GhHD1 associates with development transition from fiber initiation to elongation.

分类号:

  • 相关文献
作者其他论文 更多>>