CLE14 functions as a "brake signal"to suppress age-dependent and stress-induced leaf senescence by promoting JUB1-mediated ROS scavenging in Arabidopsis

文献类型: 外文期刊

第一作者: Zhang, Zenglin

作者: Zhang, Zenglin;Liu, Cheng;Li, Kui;Li, Xiaoxu;Xu, Mengmeng;Guo, Yongfeng

作者机构:

关键词: CLE14; peptide signal; leaf senescence; salt stress; ABA; ROS; JUB1

期刊名称:MOLECULAR PLANT ( 影响因子:21.949; 五年影响因子:19.617 )

ISSN: 1674-2052

年卷期: 2022 年 15 卷 1 期

页码:

收录情况: SCI

摘要: Leaf senescence is an important developmental process in the plant life cycle and has a significant impact on agriculture. When facing harsh environmental conditions, monocarpic plants often initiate early leaf senescence as an adaptive mechanism to ensure a complete life cycle. Upon initiation, the senescence process is fine-tuned through the coordination of both positive and negative regulators. Here, we report that the small secreted peptide CLAVATA3/ESR-RELATED 14 (CLE14) functions in the suppression of leaf senescence by regulating ROS homeostasis in Arabidopsis. Expression of the CLE14-encoding gene in leaves was significantly induced by age, high salinity, abscisic acid (ABA), salicylic acid, and jasmonic acid. CLE14 knockout plants displayed accelerated progression of both natural and salinity-induced leaf senescence, whereas increased CLE14 expression or treatments with synthetic CLE14 peptides delayed senescence. CLE14 peptide treatments also delayed ABA-induced senescence in detached leaves. Further analysis showed that over expression of CLE14 led to reduced ROS levels in leaves, where higher expression of ROS scavenging genes was detected. Moreover, CLE14 signaling resulted in transcriptional activation of JUB1, a NAC family transcription factor previously identified as a negative regulator of senescence. Notably, the delay of leaf senescence, reduction in H-2O2 level,H- and activation of ROS scavenging genes by CLE14 peptides were dependent on JUB1. Collectively, these results suggest that the small peptide CLE14 serves as a novel "brake signal"to regulate age-dependent and stress-induced leaf senescence through JUB1-mediated ROS scavenging.

分类号:

  • 相关文献
作者其他论文 更多>>